Dynamic deconvolution of seismic data based on generalized S-transform

[1]  瑞华 曹,et al.  傅里叶变换及其应用 The Fourier Transform and Its Application , 2014 .

[2]  David C. Henley,et al.  Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data , 2011 .

[3]  Yanghua Wang,et al.  Multichannel matching pursuit for seismic trace decomposition , 2010 .

[4]  Yang Liu,et al.  Seislet transform and seislet frame , 2010 .

[5]  Tadeusz J. Ulrych,et al.  Seismic absorption compensation: A least squares inverse scheme , 2007 .

[6]  Kurt J. Marfurt,et al.  Instantaneous spectral attributes to detect channels , 2007 .

[7]  Yanghua Wang,et al.  Inverse Q-filter for seismic resolution enhancement , 2006 .

[8]  C. R. Pinnegar,et al.  Time-Local Spectral Analysis for Non-Stationary Time Series: The S-Transform for Noisy Signals , 2003 .

[9]  Jing-Hua Gao,et al.  Generalized S Transform and Seismic Response Analysis of Thin Interbedss Surrounding Regions by Gps , 2003 .

[10]  Orhan Arikan,et al.  Short-time Fourier transform: two fundamental properties and an optimal implementation , 2003, IEEE Trans. Signal Process..

[11]  Z. Yao,et al.  The Forward Q Method for Compensating Attenuation and Frequency Dispersion Used in the Seismic Profile of Depth Domain , 2003 .

[12]  Yanghua Wang,et al.  A stable and efficient approach of inverse Q filtering , 2002 .

[13]  P. McFadden,et al.  DECOMPOSITION OF GEAR VIBRATION SIGNALS BY THE GENERALISED S TRANSFORM , 1999 .

[14]  G. Partyka,et al.  Interpretational applications of spectral decomposition in reservoir characterization , 1999 .

[15]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Lalu Mansinha,et al.  Localization of the complex spectrum: the S transform , 1996, IEEE Trans. Signal Process..

[17]  L. Cohen Time Frequency Analysis: Theory and Applications , 1994 .

[18]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.

[19]  Tadeusz J. Ulrych,et al.  Processing via spectral modeling , 1991 .

[20]  M. Turhan Taner,et al.  The use of the conjugate-gradient algorithm in the computation of predictive deconvolution operators , 1985 .

[21]  Ken Larner,et al.  Predictive deconvolution and the zero‐phase source , 1984 .

[22]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[23]  A. J. Berkhout,et al.  LEAST‐SQUARES INVERSE FILTERING AND WAVELET DECONVOLUTION , 1977 .

[24]  L. J. Griffiths,et al.  Adaptive deconvolution; a new technique for processing time-varying seismic data , 1977 .

[25]  G. Clarke Time-Varying Deconvolution Filters , 1968 .

[26]  E. Robinson,et al.  PRINCIPLES OF DIGITAL WIENER FILTERING , 1967 .

[27]  Walter I. Futterman,et al.  Dispersive body waves , 1962 .

[28]  D. Gabor,et al.  Theory of communication. Part 1: The analysis of information , 1946 .

[29]  Bgp In A new way to realize spectral modeling deconvolution , 2010 .

[30]  Yanghua Wang,et al.  Seismic time-frequency spectral decomposition by matching pursuit , 2007 .

[31]  G. Margrave,et al.  Gabor deconvolution of seismic data for source waveform and Q correction , 2002 .

[32]  Öz Yilmaz,et al.  Seismic data processing , 1987 .

[33]  Dave Hale,et al.  Q‐adaptive deconvolution , 1982 .

[34]  Dennis Gabor,et al.  Theory of communication , 1946 .