Pattern Synthesis With Multipoint Accurate Array Response Control

In this paper, the problem of pattern synthesis with antenna arrays is addressed, and new approaches based on the recently developed accurate array response control (<inline-formula> <tex-math notation="LaTeX">$ {\textrm {A}}^{2}\textrm {RC} $ </tex-math></inline-formula>) algorithm are presented. It is shown that the array weight vector obtained by the <inline-formula> <tex-math notation="LaTeX">$ {\textrm {A}}^{2}\textrm {RC} $ </tex-math></inline-formula> algorithm to control the normalized response at a single direction in each step belongs to a specific set. Thus, an appropriate weight vector chosen from the intersection of weight vector sets corresponding to the desired responses at multiple directions is capable of simultaneously controlling those responses. This results in the so-called multipoint accurate array response control (<inline-formula> <tex-math notation="LaTeX">$ {\textrm {MA}}^{2}\textrm {RC} $ </tex-math></inline-formula>) algorithm. Moreover, in order to avoid possible beam axis shift in pattern synthesis, a modified <inline-formula> <tex-math notation="LaTeX">$ {\textrm {MA}}^{2}\textrm {RC} $ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$ {\textrm {M}}^{2}{\textrm {A}}^{2}\textrm {RC} $ </tex-math></inline-formula>) algorithm is proposed by imposing a derivative constraint on the direction of beam axis. Representative numerical examples are provided to demonstrate the effectiveness of the proposed <inline-formula> <tex-math notation="LaTeX">$ {\textrm {MA}}^{2}\textrm {RC} $ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$ {\textrm {M}}^{2}{\textrm {A}}^{2}\textrm {RC} $ </tex-math></inline-formula> algorithms for multipoint responses control and pattern synthesis.

[1]  B. Fuchs Application of Convex Relaxation to Array Synthesis Problems , 2014, IEEE Transactions on Antennas and Propagation.

[2]  C.L. Dolph,et al.  A Current Distribution for Broadside Arrays Which Optimizes the Relationship between Beam Width and Side-Lobe Level , 1946, Proceedings of the IRE.

[3]  Qing Huo Liu,et al.  Determining the First-Null Mainlobe Region of an Arbitrary Pattern for 2-D Numerical Pattern Synthesis Algorithm , 2016, IEEE Transactions on Antennas and Propagation.

[4]  Petre Stoica,et al.  Robust Adaptive Beamforming: Li/Robust Adaptive Beamforming , 2005 .

[5]  C.-Y. Tseng,et al.  Minimum variance beamforming with phase-independent derivative constraints , 1992 .

[6]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Joan Lasenby,et al.  Direction and polarisation estimation using polarised cylindrical conformal arrays , 2012, IET Signal Process..

[8]  L. Griffiths,et al.  An adaptive generalized sidelobe canceller with derivative constraints , 1986 .

[9]  Reinhard Feger,et al.  On the Effects of Calibration Errors and Mutual Coupling on the Beam Pattern of an Antenna Array , 2013, IEEE Transactions on Antennas and Propagation.

[10]  K. Madsen,et al.  Synthesis of nonuniformly spaced arrays using a general nonlinear minimax optimisation method , 1976 .

[11]  D.H. Werner,et al.  Particle swarm optimization versus genetic algorithms for phased array synthesis , 2004, IEEE Transactions on Antennas and Propagation.

[12]  Zishu He,et al.  $\text {A}^\text {2}\text {RC}$: An Accurate Array Response Control Algorithm for Pattern Synthesis , 2017, IEEE Transactions on Signal Processing.

[13]  J. C. Olivier,et al.  Numerical synthesis of arbitrary discrete arrays , 1993 .

[14]  M. A. Ingram,et al.  Synthesis of minimax sidelobes for arbitrary arrays , 1998 .

[15]  Vittorio Murino,et al.  Synthesis of unequally spaced arrays by simulated annealing , 1996, IEEE Trans. Signal Process..

[16]  L. Vaskelainen Iterative least-squares synthesis methods for conformal array antennas with optimized polarization and frequency properties , 1997 .

[17]  Ba-Ngu Vo,et al.  Low-Dimensional SDP Formulation for Large Antenna Array Synthesis , 2007, IEEE Transactions on Antennas and Propagation.

[18]  S. C. Chan,et al.  Pattern Synthesis of Narrowband Conformal Arrays Using Iterative Second-Order Cone Programming , 2010, IEEE Transactions on Antennas and Propagation.

[19]  L. J. Griffiths,et al.  A simple algorithm to achieve desired patterns for arbitrary arrays , 1992, IEEE Trans. Signal Process..

[20]  Dan P. Scholnik,et al.  A Parameterized Pattern-Error Objective for Large-Scale Phase-Only Array Pattern Design , 2016, IEEE Transactions on Antennas and Propagation.

[21]  Kesong Chen,et al.  Synthesis of Sparse Planar Arrays Using Modified Real Genetic Algorithm , 2007, IEEE Transactions on Antennas and Propagation.

[22]  Marco A. Panduro,et al.  Synthesis of sparse circular antenna arrays applying a tapering technique over reconstructed continuous current distribution , 2016 .

[23]  M. A. Ingram,et al.  Pattern Synthesis for Arbitrary Arrays Using an Adaptive Array Method , 1999 .

[24]  Fan Wang,et al.  Optimal array pattern synthesis using semidefinite programming , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[25]  B. Fuchs,et al.  Optimal Polarization Synthesis of Arbitrary Arrays With Focused Power Pattern , 2011, IEEE Transactions on Antennas and Propagation.

[26]  Yong-Xin Guo,et al.  Frequency-invariant pattern synthesis of conformal array antenna with low cross-polarisation , 2008 .

[27]  Stephen P. Boyd,et al.  Antenna array pattern synthesis via convex optimization , 1997, IEEE Trans. Signal Process..

[28]  R.T. Compton,et al.  A numerical pattern synthesis algorithm for arrays , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.