AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders

[1]  Sumanta Ray,et al.  DTI-SNNFRA: Drug-target interaction prediction by shared nearest neighbors and fuzzy-rough approximation , 2020, PloS one.

[2]  Parvin Razzaghi,et al.  Deep Learning in Drug Target Interaction Prediction: Current and Future Perspective. , 2020, Current medicinal chemistry.

[3]  Parvin Razzaghi,et al.  DeepCDA: deep cross-domain compound-protein affinity prediction through LSTM and convolutional neural networks , 2020, Bioinform..

[4]  Kayvan Najarian,et al.  Machine learning approaches and databases for prediction of drug–target interaction: a survey paper , 2020, Briefings Bioinform..

[5]  Seongok Ryu,et al.  Predicting Drug-Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation , 2019, J. Chem. Inf. Model..

[6]  Xiangrong Liu,et al.  deepDR: a network-based deep learning approach to in silico drug repositioning , 2019, Bioinform..

[7]  Min Chen,et al.  Revealing Drug-Target Interactions with Computational Models and Algorithms , 2019, Molecules.

[8]  Hojung Nam,et al.  DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences , 2018, PLoS Comput. Biol..

[9]  Meriem Bahi,et al.  Deep semi-supervised learning for DTI prediction using large datasets and H2O-spark platform , 2018, 2018 International Conference on Intelligent Systems and Computer Vision (ISCV).

[10]  Arzucan Özgür,et al.  DeepDTA: deep drug–target binding affinity prediction , 2018, Bioinform..

[11]  Vladimir B. Bajic,et al.  DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches , 2017, Bioinform..

[12]  Hyeon-Eui Kim,et al.  Deep mining heterogeneous networks of biomedical linked data to predict novel drug‐target associations , 2017, Bioinform..

[13]  Chee Keong Kwoh,et al.  Drug-Target Interaction Prediction with Graph Regularized Matrix Factorization , 2017, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[14]  Artem Cherkasov,et al.  SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines , 2017, Journal of Cheminformatics.

[15]  Ming Wen,et al.  Deep-Learning-Based Drug-Target Interaction Prediction. , 2017, Journal of proteome research.

[16]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[17]  Yanli Wang,et al.  Predicting drug-target interactions by dual-network integrated logistic matrix factorization , 2017, Scientific Reports.

[18]  Lei Xie,et al.  Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem , 2016, Scientific Reports.

[19]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[20]  Minoru Kanehisa,et al.  KEGG: new perspectives on genomes, pathways, diseases and drugs , 2016, Nucleic Acids Res..

[21]  Thomas C. Wiegers,et al.  The Comparative Toxicogenomics Database: update 2017 , 2016, Nucleic Acids Res..

[22]  Keith C. C. Chan,et al.  Large-scale prediction of drug-target interactions from deep representations , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[23]  Yongdong Zhang,et al.  Drug-target interaction prediction: databases, web servers and computational models , 2016, Briefings Bioinform..

[24]  Chunyan Miao,et al.  Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction , 2016, PLoS Comput. Biol..

[25]  Ivan G. Costa,et al.  A multiple kernel learning algorithm for drug-target interaction prediction , 2016, BMC Bioinformatics.

[26]  Shuigeng Zhou,et al.  Boosting compound-protein interaction prediction by deep learning , 2015, 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[27]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[28]  Scott Sanner,et al.  AutoRec: Autoencoders Meet Collaborative Filtering , 2015, WWW.

[29]  Hao Ding,et al.  Similarity-based machine learning methods for predicting drug-target interactions: a brief review , 2014, Briefings Bioinform..

[30]  Devansh Arpit,et al.  Is Joint Training Better for Deep Auto-Encoders? , 2014 .

[31]  Tapio Pahikkala,et al.  Toward more realistic drug^target interaction predictions , 2014 .

[32]  Tao Xu,et al.  Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Sets: A Comparative and Integrative Analysis , 2014, J. Chem. Inf. Model..

[33]  Hao Ding,et al.  Collaborative matrix factorization with multiple similarities for predicting drug-target interactions , 2013, KDD.

[34]  S. Opella,et al.  Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. , 2013, Annual review of analytical chemistry.

[35]  Xing Chen,et al.  Drug-target interaction prediction by random walk on the heterogeneous network. , 2012, Molecular bioSystems.

[36]  V. Miranda,et al.  Reconstructing Missing Data in State Estimation With Autoencoders , 2012, IEEE Transactions on Power Systems.

[37]  Mindy I. Davis,et al.  Comprehensive analysis of kinase inhibitor selectivity , 2011, Nature Biotechnology.

[38]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[39]  CHUN WEI YAP,et al.  PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints , 2011, J. Comput. Chem..

[40]  David S. Wishart,et al.  DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs , 2010, Nucleic Acids Res..

[41]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[42]  Jean-Philippe Vert,et al.  Protein-ligand interaction prediction: an improved chemogenomics approach , 2008, Bioinform..

[43]  Yoshihiro Yamanishi,et al.  Prediction of drug–target interaction networks from the integration of chemical and genomic spaces , 2008, ISMB.

[44]  Christian von Mering,et al.  STITCH: interaction networks of chemicals and proteins , 2007, Nucleic Acids Res..

[45]  Robert B. Russell,et al.  SuperTarget and Matador: resources for exploring drug-target relationships , 2007, Nucleic Acids Res..

[46]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[47]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[48]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[49]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[50]  Y.Z. Chen,et al.  Ligand–protein inverse docking and its potential use in the computer search of protein targets of a small molecule , 2001, Proteins.

[51]  J. Hendrickson Similarity in Chemistry , 1991, Science.

[52]  Vijay V. Raghavan,et al.  A critical investigation of recall and precision as measures of retrieval system performance , 1989, TOIS.

[53]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[54]  Chee Keong Kwoh,et al.  Drug-target interaction prediction by learning from local information and neighbors , 2013, Bioinform..

[55]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[56]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .