A bicriterion scheduling problem involving total flowtime and total tardiness

[1]  T. Sen,et al.  A branch-and-bound approach to the bicriterion scheduling problem invloving total flowtime and range of lateness , 1988 .

[2]  Hamilton Emmons,et al.  One-Machine Sequencing to Minimize Certain Functions of Job Tardiness , 1969, Oper. Res..

[3]  Horace W. Heck,et al.  A note on the extension of a result on scheduling with secondary criteria , 1972 .

[4]  Marshall L. Fisher,et al.  A dual algorithm for the one-machine scheduling problem , 1976, Math. Program..

[5]  R. Burns Scheduling to minimize the weighted sum of completion times with secondary criteria , 1976 .

[6]  Sen Tapan,et al.  A Branch-and-Bound Procedure to Solve a Bicriterion Scheduling Problem , 1983 .

[7]  Linus Schrage,et al.  Dynamic Programming Solution of Sequencing Problems with Precedence Constraints , 1978, Oper. Res..

[8]  Tapan Sen,et al.  On the Single-machine Scheduling Problem with Tardiness Penalties , 1991 .

[9]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[10]  Wayne E. Smith Various optimizers for single‐stage production , 1956 .

[11]  W. Townsend The Single Machine Problem with Quadratic Penalty Function of Completion Times: A Branch-and-Bound Solution , 1978 .

[12]  Ludo Gelders,et al.  Solving a bicriterion scheduling problem , 1980 .

[13]  Lucio Bianco,et al.  Scheduling of a single machine to minimize total weighted completion time subject to release dates , 1982 .

[14]  Chris N. Potts,et al.  A decomposition algorithm for the single machine total tardiness problem , 1982, Oper. Res. Lett..

[15]  K. R. Baker,et al.  A bicriterion approach to time/cost trade-offs in sequencing , 1982 .