Geomicrobiology of a seawater-influenced active sulfuric acid cave

Fetida Cave is an active sulfuric acid cave influenced by seawater, showing abundant microbial communities that organize themselves under three main different morphologies: water filaments, vermiculations and moonmilk deposits. These biofilms/deposits have different cave distribution, pH, macro- and microelement and mineralogical composition, carbon and nitrogen content. In particular, water filaments and vermiculations had circumneutral and slightly acidic pH, respectively, both had abundant organic carbon and high microbial diversity. They were rich in macro- and microelements, deriving from mineral dissolution, and, in the case of water filaments, from seawater composition. Vermiculations had different color, partly associated with their mineralogy, and unusual minerals probably due to trapping capacities. Moonmilk was composed of gypsum, poor in organic matter, had an extremely low pH (0–1) and low microbial diversity. Based on 16S rRNA gene analysis, the microbial composition of the biofilms/deposits included autotrophic taxa associated with sulfur and nitrogen cycles and biomineralization processes. In particular, water filaments communities were characterized by bacterial taxa involved in sulfur oxidation and reduction in aquatic, aphotic, microaerophilic/anoxic environments (Campylobacterales, Thiotrichales, Arenicellales, Desulfobacterales, Desulforomonadales) and in chemolithotrophy in marine habitats (Oceanospirillales, Chromatiales). Their biodiversity was linked to the morphology of the water filaments and their collection site. Microbial communities within vermiculations were partly related to their color and showed high abundance of unclassified Betaproteobacteria and sulfur-oxidizing Hydrogenophilales (including Sulfuriferula), and Acidiferrobacterales (including Sulfurifustis), sulfur-reducing Desulfurellales, and ammonia-oxidizing Planctomycetes and Nitrospirae. The microbial community associated with gypsum moonmilk showed the strong dominance (>60%) of the archaeal genus Thermoplasma and lower abundance of chemolithotrophic Acidithiobacillus, metal-oxidizing Metallibacterium, Sulfobacillus, and Acidibacillus. This study describes the geomicrobiology of water filaments, vermiculations and gypsum moonmilk from Fetida Cave, providing insights into the microbial taxa that characterize each morphology and contribute to biogeochemical cycles and speleogenesis of this peculiar seawater-influenced sulfuric acid cave.

[1]  D. Baldantoni,et al.  Vermiculations from karst caves: The case of Pertosa-Auletta system (Italy) , 2019, CATENA.

[2]  Jason S Lee,et al.  Deep-Sea Biofilms, Historic Shipwreck Preservation and the Deepwater Horizon Spill , 2019, Front. Mar. Sci..

[3]  E. Marques,et al.  Purple Sulfur Bacteria Dominate Microbial Community in Brazilian Limestone Cave , 2019, Microorganisms.

[4]  K. Hudson-Edwards,et al.  Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation. , 2019, Environmental pollution.

[5]  Paulo C. Covarrubias,et al.  Insights into the biology of acidophilic members of the Acidiferrobacteraceae family derived from comparative genomic analyses. , 2018, Research in microbiology.

[6]  D. Zannoni,et al.  Microbial diversity and biosignatures of amorphous silica deposits in orthoquartzite caves , 2018, Scientific Reports.

[7]  N. Jiao,et al.  Coupled Carbon, Sulfur, and Nitrogen Cycles Mediated by Microorganisms in the Water Column of a Shallow-Water Hydrothermal Ecosystem , 2018, Front. Microbiol..

[8]  S. Lücker,et al.  Complete nitrification: insights into the ecophysiology of comammox Nitrospira , 2018, Applied Microbiology and Biotechnology.

[9]  C. Arrighi,et al.  Calcite moonmilk of microbial origin in the Etruscan Tomba degli Scudi in Tarquinia, Italy , 2018, Scientific Reports.

[10]  Francesco Asnicar,et al.  QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science , 2018 .

[11]  T. Neu,et al.  Thermodesulfobium sp. strain 3baa, an acidophilic sulfate reducing bacterium forming biofilms triggered by mineral precipitation , 2018, Environmental microbiology.

[12]  M. Parise,et al.  New insights on secondary minerals from Italian sulfuric acid caves , 2018, International Journal of Speleology.

[13]  A. Z. Miller,et al.  Origin of abundant moonmilk deposits in a subsurface granitic environment , 2018 .

[14]  Tom O. Delmont,et al.  Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes , 2018, Nature Microbiology.

[15]  Sudhir Kumar,et al.  MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. , 2018, Molecular biology and evolution.

[16]  Jang-Cheon Cho,et al.  Complete genome sequence of Granulosicoccus antarcticus type strain IMCC3135T, a marine gammaproteobacterium with a putative dimethylsulfoniopropionate demethylase gene. , 2017, Marine genomics.

[17]  Muhammad Hassan,et al.  Anaerobic ammonium oxidation-denitrification synergistic interaction of mature landfill leachate in aged refuse bioreactor: Variations and effects of microbial community structures. , 2017, Bioresource technology.

[18]  S. Lücker,et al.  Linking Nitrogen Load to the Structure and Function of Wetland Soil and Rhizosphere Microbial Communities , 2017, mSystems.

[19]  K. McMahon,et al.  Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium “Candidatus Nitrospira nitrosa” , 2017, mSystems.

[20]  Soumya Ghosh,et al.  In Situ Cultured Bacterial Diversity from Iron Curtain Cave, Chilliwack, British Columbia, Canada , 2017 .

[21]  Daniel S. Jones,et al.  Complete Genome Sequence of Sulfuriferula sp. Strain AH1, a Sulfur-Oxidizing Autotroph Isolated from Weathered Mine Tailings from the Duluth Complex in Minnesota , 2017, Genome Announcements.

[22]  S. McIlroy,et al.  Culture-Independent Analyses Reveal Novel Anaerolineaceae as Abundant Primary Fermenters in Anaerobic Digesters Treating Waste Activated Sludge , 2017, Front. Microbiol..

[23]  A. Goesmann,et al.  Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum YT , 2017, Scientific Reports.

[24]  Paul J. McMurdie,et al.  Exact sequence variants should replace operational taxonomic units in marker-gene data analysis , 2017, The ISME Journal.

[25]  A. Stams,et al.  Genome Sequence of Desulfurella amilsii Strain TR1 and Comparative Genomics of Desulfurellaceae Family , 2017, Front. Microbiol..

[26]  S. Fedi,et al.  Diversity of Methane-Oxidizing Bacteria in Soils from “Hot Lands of Medolla” (Italy) Featured by Anomalous High-Temperatures and Biogenic CO2 Emission , 2016, Microbes and environments.

[27]  M. Fukui,et al.  The complete genome sequences of sulfur-oxidizing Gammaproteobacteria Sulfurifustis variabilis skN76T and Sulfuricaulis limicola HA5T , 2016, Standards in genomic sciences.

[28]  Hector Zenil,et al.  Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems , 2016, Scientific Reports.

[29]  Mirona I. Chirienco The Crystalline Phase of the Carbonate Moonmilk: A Terminology Approach , 2016 .

[30]  Daniel S. Jones,et al.  Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms , 2016, The ISME Journal.

[31]  Paul J. McMurdie,et al.  DADA2: High resolution sample inference from Illumina amplicon data , 2016, Nature Methods.

[32]  E. Trembath-Reichert,et al.  Characterization of microbial associations with methanotrophic archaea and sulfate-reducing bacteria through statistical comparison of nested Magneto-FISH enrichments , 2016, PeerJ.

[33]  J. Bigot,et al.  Sulfuric acid speleogenesis (SAS) close to the water table: Examples from southern France, Austria, and Sicily , 2016 .

[34]  Karolina Tomczyk-Żak,et al.  Microbial Diversity in Caves , 2016 .

[35]  Kathleen M. Schleinitz,et al.  Metagenome-Based Metabolic Reconstruction Reveals the Ecophysiological Function of Epsilonproteobacteria in a Hydrocarbon-Contaminated Sulfidic Aquifer , 2015, Front. Microbiol..

[36]  C. Saiz-Jimenez,et al.  Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions , 2015, Front. Microbiol..

[37]  T. Velaj New ideas on the tectonic of the Kurveleshi anticlinal belt in Albania, and the perspective for exploration in its subthrust , 2015 .

[38]  J. Overmann,et al.  Novel isolates double the number of chemotrophic species and allow the first description of higher taxa in Acidobacteria subdivision 4. , 2015, Systematic and applied microbiology.

[39]  Nicola Tisato,et al.  Microbial mediation of complex subterranean mineral structures , 2015, Scientific Reports.

[40]  M. Fukui,et al.  Sulfurifustis variabilis gen. nov., sp. nov., a sulfur oxidizer isolated from a lake, and proposal of Acidiferrobacteraceae fam. nov. and Acidiferrobacterales ord. nov. , 2015, International journal of systematic and evolutionary microbiology.

[41]  M. Perner,et al.  The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines , 2015, Front. Microbiol..

[42]  B. Baker,et al.  Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria , 2015, Microbiome.

[43]  Antonio Ribeiro da Cunha,et al.  Evaluation of measurement errors of temperature and relative humidity from HOBO data logger under different conditions of exposure to solar radiation , 2015, Environmental Monitoring and Assessment.

[44]  Daniel S. Jones,et al.  Metatranscriptomic Analysis of Diminutive Thiomargarita-Like Bacteria (“Candidatus Thiopilula” spp.) from Abyssal Cold Seeps of the Barbados Accretionary Prism , 2015, Applied and Environmental Microbiology.

[45]  M. Teramoto,et al.  Perspicuibacter marinus gen. nov., sp. nov., a semi-transparent bacterium isolated from surface seawater, and description of Arenicellaceae fam. nov. and Arenicellales ord. nov. , 2015, International journal of systematic and evolutionary microbiology.

[46]  J. Banfield,et al.  Comparison of environmental and isolate Sulfobacillus genomes reveals diverse carbon, sulfur, nitrogen, and hydrogen metabolisms , 2014, BMC Genomics.

[47]  Nicola Piana Agostinetti,et al.  Apulian crust: Top to bottom , 2014 .

[48]  Daniel S. Jones,et al.  Metagenomic insights into S(0) precipitation in a terrestrial subsurface lithoautotrophic ecosystem , 2014, Front. Microbiol..

[49]  C. Burlet,et al.  Niphargus: A silicon band-gap sensor temperature logger for high-precision environmental monitoring , 2014, Comput. Geosci..

[50]  J. Murrell,et al.  Microbiology of Movile Cave—A Chemolithoautotrophic Ecosystem , 2014 .

[51]  M. Balasch,et al.  Comparison of Bacterial Diversity in Azorean and Hawai'ian Lava Cave Microbial Mats , 2014, Geomicrobiology journal.

[52]  M. Paoletti,et al.  Comparative microbial community composition from secondary carbonate (moonmilk) deposits: implications for the Cansiliella servadeii cave hygropetric food web , 2013 .

[53]  S. Grasby,et al.  Metagenomic evidence for sulfur lithotrophy by Epsilonproteobacteria as the major energy source for primary productivity in a sub-aerial arctic glacial deposit, Borup Fiord Pass , 2013, Front. Microbiol..

[54]  S. Joshi,et al.  Insights into Cave Architecture and the Role of Bacterial Biofilm , 2013, Proceedings of the National Academy of Sciences, India Section B: Biological Sciences.

[55]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[56]  A. Z. Miller,et al.  Biogenic Mn oxide minerals coating in a subsurface granite environment , 2012 .

[57]  Jörg Peplies,et al.  Microbial and Chemical Characterization of Underwater Fresh Water Springs in the Dead Sea , 2012, PloS one.

[58]  Daniel S. Jones,et al.  Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm , 2011, The ISME Journal.

[59]  Daniel S. Jones,et al.  Community Structure of Subsurface Biofilms in the Thermal Sulfidic Caves of Acquasanta Terme, Italy , 2010, Applied and Environmental Microbiology.

[60]  William A. Walters,et al.  Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample , 2010, Proceedings of the National Academy of Sciences.

[61]  S. Scuri,et al.  THE SULFIDIC THERMAL CAVES OF ACQUASANTA TERME (CENTRAL ITALY) , 2010 .

[62]  H. Barton,et al.  Microbe–Mineral Interactions: Cave Geomicrobiology , 2010 .

[63]  Daniel S. Jones,et al.  Geomicrobiology of biovermiculations from the Frasassi cave system, Italy , 2008 .

[64]  Daniel S. Jones,et al.  Niche differentiation among sulfur-oxidizing bacterial populations in cave waters , 2008, The ISME Journal.

[65]  Purificación López-García,et al.  Metagenomics of the Deep Mediterranean, a Warm Bathypelagic Habitat , 2007, PloS one.

[66]  Daniel S. Jones,et al.  Extremely acidic, pendulous cave wall biofilms from the Frasassi cave system, Italy. , 2007, Environmental microbiology.

[67]  C. Kato,et al.  Microbial ecology of submerged marine caves and holes characterized by high levels of hydrogen sulphide , 2007 .

[68]  J. Macalady,et al.  Dominant Microbial Populations in Limestone-Corroding Stream Biofilms, Frasassi Cave System, Italy , 2006, Applied and Environmental Microbiology.

[69]  K. Timmis,et al.  Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. , 2005, Environmental microbiology.

[70]  Zoe Ann Brown,et al.  Certification of NIST Standard Reference Material 1575a Pine Needles and Results of an International Laboratory Comparison , 2004 .

[71]  P. Bennett,et al.  Microbial contributions to cave formation: New insights into sulfuric acid speleogenesis , 2004 .

[72]  N. Pace,et al.  Molecular Phylogenetic Analysis of a Bacterial Community in an Oligotrophic Cave Environment , 2004 .

[73]  M. Wagner,et al.  Filamentous “Epsilonproteobacteria” Dominate Microbial Mats from Sulfidic Cave Springs , 2003, Applied and Environmental Microbiology.

[74]  T. Omori,et al.  Marinobacterium sp. strain DMS-S1 uses dimethyl sulphide as a sulphur source after light-dependent transformation by excreted flavins. , 2003, Environmental microbiology.

[75]  E. Delong,et al.  Characterization of an Autotrophic Sulfide-Oxidizing Marine Arcobacter sp. That Produces Filamentous Sulfur , 2002, Applied and Environmental Microbiology.

[76]  Diana E. Northup, Kathleen H. Lavoie Geomicrobiology of Caves: A Review , 2001 .

[77]  S. M. Thomas,et al.  Microbial nitrogen cycles: physiology, genomics and applications. , 2001, Current opinion in microbiology.

[78]  Dmitrij Frishman,et al.  The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum , 2000, Nature.

[79]  D. Northup,et al.  Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment , 2000 .

[80]  B. Jones,et al.  Calcite Moonmilk: Crystal Morphology and Environment of Formation in Caves in the Italian Alps , 2000 .

[81]  M. Menichetti,et al.  Occurrence of hypogenic caves in a karst region: Examples from central Italy , 1995 .

[82]  G. Calo,et al.  Systematic hydrogeological study of a hypothermal spring (S. Cesarea Terme, Apulia), Italy , 1995 .

[83]  J. Henry,et al.  Bragasellus escolai n.sp., Crustacea Isopoda Asellota cavernicole d'Espagne , 1978 .

[84]  M. Gori,et al.  A critical review of hypotheses on the origin of vermiculations , 1978 .

[85]  A. Klimchouk Types and Settings of Hypogene Karst , 2017 .

[86]  M. Parise,et al.  The Coastal Sulfuric Acid Cave System of Santa Cesarea Terme (Southern Italy) , 2017 .

[87]  A. Auler,et al.  Hypogene Karst Regions and Caves of the World , 2017 .

[88]  Daniel S. Jones,et al.  The Snotty and the Stringy: Energy for Subsurface Life in Caves , 2016 .

[89]  C. J. Hurst,et al.  Their World: A Diversity of Microbial Environments , 2016, Advances in Environmental Microbiology.

[90]  J. Gonzalez,et al.  Moonmilk Deposits Originate from Specific Bacterial Communities in Altamira Cave (Spain) , 2010, Microbial Ecology.

[91]  K. Schleifer,et al.  Linking phylogenetic and functional diversity to nutrient spiraling in microbial mats from Lower Kane Cave (USA) , 2010, The ISME Journal.

[92]  A. Engel OBSERVATIONS ON THE BIODIVERSITY OF SULFIDIC KARST HABITATS , 2007 .

[93]  C. Lascu,et al.  Preliminary Evidence for a Sulphur Cycle in Movile Cave, Romania , 2003 .

[94]  S. Galdenzi,et al.  GYPSUM DEPOSITS IN THE FRASASSI CAVES, CENTRAL ITALY , 2003 .

[95]  D E Northup,et al.  Cave biosignature suites: microbes, minerals, and Mars. , 2001, Astrobiology.

[96]  L. Hose,et al.  CUEVA DE VILLA LUZ, TABASCO, MEXICO: RECONNAISSANCE STUDY OF AN ACTIVE SULFUR SPRING CAVE AND ECOSYSTEM , 1999 .

[97]  M. Fitzsimons,et al.  Chemoautotrophic Microbial Mats in Submarine Caves with Hydrothermal Sulphidic Springs at Cape Palinuro, Italy , 1998, Microbial Ecology.

[98]  L. Ghergari,et al.  Moonmilk Mineralogy in Some Romanian and Norwegian Caves , 1993 .

[99]  Carol A. Hill,et al.  Cave Minerals of the World , 1976 .