Generation of Variants of a Motor Act in a Modular and Hierarchical Motor Network

[1]  I. Kupfermann Feeding behavior in Aplysia: a simple system for the study of motivation. , 1974, Behavioral biology.

[2]  Douglas G. Stuart,et al.  Neural Control of Locomotion , 1976, Advances in Behavioral Biology.

[3]  Allen I. Selverston,et al.  Are central pattern generators understandable? , 1980, Behavioral and Brain Sciences.

[4]  S. Grillner Neurobiological bases of rhythmic motor acts in vertebrates. , 1985, Science.

[5]  H. Chiel,et al.  Activity of an identified histaminergic neuron, and its possible role in arousal of feeding behavior in semi-intact Aplysia , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  P A Getting,et al.  Emerging principles governing the operation of neural networks. , 1989, Annual review of neuroscience.

[7]  K. R. Weiss,et al.  Differential firing patterns of the peptide-containing cholinergic motor neurons B15 and B16 during feeding behavior inAplysia , 1990, Brain Research.

[8]  F A Mussa-Ivaldi,et al.  Computations underlying the execution of movement: a biological perspective. , 1991, Science.

[9]  G. E. Alexander,et al.  Do cortical and basal ganglionic motor areas use “motor programs” to control movement? , 1992 .

[10]  E. Fetz Movement control: Are movement parameters recognizably coded in the activity of single neurons? , 1992 .

[11]  V. Castellucci,et al.  Contribution of polysynaptic pathways in the mediation and plasticity of Aplysia gill and siphon withdrawal reflex: evidence for differential modulation , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Daniel F. Bossut,et al.  IMPLICATION OF NEURAL NETWORKS FOR HOW WE THINK ABOUT BRAIN FUNCTION , 1992 .

[13]  Ferdinando A. Mussa-Ivaldi,et al.  Toward a neurobiology of coordinate transformations , 1995 .

[14]  E. Marder,et al.  Principles of rhythmic motor pattern generation. , 1996, Physiological reviews.

[15]  P. Katz Neurons, Networks, and Motor Behavior , 1996, Neuron.

[16]  I. Hurwitz,et al.  B64, a newly identified central pattern generator element producing a phase switch from protraction to retraction in buccal motor programs of Aplysia californica. , 1996, Journal of neurophysiology.

[17]  W. Kristan,et al.  The role of population coding in the control of movement , 1997 .

[18]  I. Hurwitz,et al.  Different roles of neurons B63 and B34 that are active during the protraction phase of buccal motor programs in Aplysia californica. , 1997, Journal of neurophysiology.

[19]  S. Grillner,et al.  Selection and initiation of motor behavior , 1997 .

[20]  D. A. Baxter,et al.  Identification and characterization of catecholaminergic neuron B65, which initiates and modifies patterned activity in the buccal ganglia of Aplysia. , 1998, Journal of neurophysiology.

[21]  D M Wolpert,et al.  Multiple paired forward and inverse models for motor control , 1998, Neural Networks.

[22]  E. Bizzi,et al.  The construction of movement by the spinal cord , 1999, Nature Neuroscience.

[23]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[24]  Ferdinando A Mussa-Ivaldi,et al.  Modular features of motor control and learning , 1999, Current Opinion in Neurobiology.

[25]  K. R. Weiss,et al.  C-PR neuron of Aplysia has differential effects on "Feeding" cerebral interneurons, including myomodulin-positive CBI-12. , 1999, Journal of neurophysiology.

[26]  G. E. Loeb,et al.  A hierarchical foundation for models of sensorimotor control , 1999, Experimental Brain Research.

[27]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[28]  E. Marder Motor pattern generation , 2000, Current Opinion in Neurobiology.

[29]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[30]  M. Kirk,et al.  Short-Term Synaptic Enhancement Modulates Ingestion Motor Programs of Aplysia , 2000, The Journal of Neuroscience.

[31]  S Grillner,et al.  Heterogeneity of the Population of Command Neurons in the Lamprey , 2001, The Journal of Neuroscience.

[32]  J. Jing,et al.  Neural Mechanisms of Motor Program Switching inAplysia , 2001, The Journal of Neuroscience.

[33]  Irving Kupfermann,et al.  Motor program selection in simple model systems , 2001, Current Opinion in Neurobiology.

[34]  Cerebral-buccal pathways in Aplysia californica: synaptic connections, cooperative interneuronal effects and feedback during buccal motor programs , 2001, Journal of Comparative Physiology A.

[35]  J. Jing,et al.  Interneuronal and peptidergic control of motor pattern switching in Aplysia. , 2002, Journal of neurophysiology.

[36]  P. Stein,et al.  Modular Organization of Turtle Spinal Interneurons during Normal and Deletion Fictive Rostral Scratching , 2002, The Journal of Neuroscience.

[37]  J. Jing,et al.  Interneuronal Basis of the Generation of Related but Distinct Motor Programs in Aplysia: Implications for Current Neuronal Models of Vertebrate Intralimb Coordination , 2002, The Journal of Neuroscience.

[38]  Emilio Bizzi,et al.  Coordination and localization in spinal motor systems , 2002, Brain Research Reviews.

[39]  S. Grillner The motor infrastructure: from ion channels to neuronal networks , 2003, Nature Reviews Neuroscience.

[40]  K. R. Weiss,et al.  Fast synaptic connections from CBIs to pattern-generating neurons in Aplysia: initiation and modification of motor programs. , 2003, Journal of neurophysiology.

[41]  Emilio Bizzi,et al.  Combinations of muscle synergies in the construction of a natural motor behavior , 2003, Nature Neuroscience.

[42]  Ji-Ho Park,et al.  Concerted GABAergic Actions of Aplysia Feeding Interneurons in Motor Program Specification , 2003, The Journal of Neuroscience.

[43]  E. Todorov Optimality principles in sensorimotor control , 2004, Nature Neuroscience.

[44]  S. Scott Optimal feedback control and the neural basis of volitional motor control , 2004, Nature Reviews Neuroscience.

[45]  Jian Jing,et al.  Dopaminergic contributions to modulatory functions of a dual-transmitter interneuron in Aplysia , 2004, Neuroscience Letters.

[46]  S. Hooper,et al.  Crustacean Motor Pattern Generator Networks , 2004, Neurosignals.

[47]  H. Chiel,et al.  In vivo buccal nerve activity that distinguishes ingestion from rejection can be used to predict behavioral transitions in Aplysia , 1993, Journal of Comparative Physiology A.

[48]  J. Jing,et al.  The Construction of Movement with Behavior-Specific and Behavior-Independent Modules , 2004, The Journal of Neuroscience.

[49]  Tomaso Poggio,et al.  Generalization in vision and motor control , 2004, Nature.

[50]  H. Chiel,et al.  The timing of activity in motor neurons that produce radula movements distinguishes ingestion from rejection in Aplysia , 1993, Journal of Comparative Physiology A.

[51]  S. Giszter,et al.  Modular Premotor Drives and Unit Bursts as Primitives for Frog Motor Behaviors , 2004, The Journal of Neuroscience.

[52]  Emilio Bizzi,et al.  Shared and specific muscle synergies in natural motor behaviors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  G. Loeb Neural control of locomotion , 1989 .