A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits

We present a numerical method for finding and continuing heteroclinic connections of vector fields that involve periodic orbits. Specifically, we concentrate on the case of a codimension-d heteroclinic connection from a saddle equilibrium to a saddle periodic orbit, denoted EtoP connection for short. By employing a Lin's method approach we construct a boundary value problem that has as its solution two orbit segments, one from the equilibrium to a suitable section Σ and the other from Σ to the periodic orbit. The difference between their two end points in Σ can be chosen in a d-dimensional subspace, and this gives rise to d well-defined test functions that are called the Lin gaps. A connecting orbit can be found in a systematic way by closing the Lin gaps one by one in d consecutive continuation runs. Indeed, any common zero of the Lin gaps corresponds to an EtoP connection, which can then be continued in system parameters. The performance of our method is demonstrated with a number of examples. Specifically, we computate different types of EtoP orbits in the Lorenz system, in a vector-field model of a saddle-node Hopf bifurcation with global reinjection and in a four-dimensional Duffing-type system. Finally, we demonstrate the versatility of our geometric approach by finding a codimension-zero heteroclinic connection between two saddle periodic orbits in a four-dimensional vector field.

[1]  Yuri A. Kuznetsov,et al.  Continuation of Connecting orbits in 3D-ODES (II) : Cycle-to-Cycle Connections , 2008, Int. J. Bifurc. Chaos.

[2]  Fabio Dercole BPCONT: An Auto Driver for the Continuation of Branch Points of Algebraic and Boundary-Value Problems , 2008, SIAM J. Sci. Comput..

[3]  Yuri A. Kuznetsov,et al.  Continuation of Connecting orbits in 3D-ODES (I): Point-to-Cycle Connections , 2007, Int. J. Bifurc. Chaos.

[4]  Edgar Knobloch,et al.  When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..

[5]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[6]  Eusebius J. Doedel,et al.  Lecture Notes on Numerical Analysis of Nonlinear Equations , 2007 .

[7]  Bernd Krauskopf,et al.  Global bifurcations of the Lorenz manifold , 2006 .

[8]  Bernd Krauskopf,et al.  Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation , 2006 .

[9]  Jens D. M. Rademacher,et al.  Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit , 2005 .

[10]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[11]  Sebastian Wieczorek,et al.  Bifurcations of n-homoclinic orbits in optically injected lasers , 2005 .

[12]  Bernd Krauskopf,et al.  Computing One-Dimensional Global Manifolds of Poincaré Maps by Continuation , 2005, SIAM J. Appl. Dyn. Syst..

[13]  Luca Dieci,et al.  Erratum: Point-to-Periodic and Periodic-to-Periodic Connections , 2004 .

[14]  Rob Sturman,et al.  Two-state intermittency near a symmetric interaction of saddle-node and Hopf bifurcations: a case study from dynamo theory , 2004 .

[15]  L. Dieci,et al.  Point-to-Periodic and Periodic-to-Periodic Connections , 2004 .

[16]  P. Xu,et al.  The Existence of Silnikov's Orbit in Four-dimensional Duffing's Systems , 2003 .

[17]  Alan R. Champneys,et al.  Homoclinic Branch Switching: a Numerical Implementation of Lin's Method , 2003, Int. J. Bifurc. Chaos.

[18]  R. Vitolo Bifurcations of attractors in 3D diffeomorphisms : a study in experimental mathematics , 2003 .

[19]  Thorsten Pampel,et al.  Numerical approximation of connecting orbits with asymptotic rate , 2001, Numerische Mathematik.

[20]  Kurt Lust,et al.  Improved numerical Floquet Multipliers , 2001, Int. J. Bifurc. Chaos.

[21]  Global bifurcations in a laser with injected signal: Beyond Adler's approximation. , 2001, Chaos.

[22]  A. Yew,et al.  Multipulses of Nonlinearly-coupled Schrr Odinger Equations , 1999 .

[23]  James Demmel,et al.  Computing Connecting Orbits via an Improved Algorithm for Continuing Invariant Subspaces , 2000, SIAM J. Sci. Comput..

[24]  Daan Lenstra,et al.  Tori and their bifurcations in an optically injected semiconductor laser , 1998 .

[25]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[26]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[27]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[28]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[29]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[30]  Wolf-Jürgen Beyn,et al.  On well-posed problems for connecting orbits in dynamical systems , 1994 .

[31]  P. Hirschberg,et al.  Sbil'nikov-Hopf bifurcation , 1993 .

[32]  Mark J. Friedman,et al.  Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .

[33]  J. Alexander,et al.  Dynamic bifurcations in a power system model exhibiting voltage collapse , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[34]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[35]  Xiao-Biao Lin,et al.  Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[36]  Mark J. Friedman,et al.  Numerical computation of heteroclinic orbits , 1989 .

[37]  S. A. Robertson,et al.  NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .

[38]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[39]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[40]  H. B. Keller,et al.  Boundary Value Problems on Semi-Infinite Intervals and Their Numerical Solution , 1980 .

[41]  E. Lorenz Deterministic nonperiodic flow , 1963 .