A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits
暂无分享,去创建一个
[1] Yuri A. Kuznetsov,et al. Continuation of Connecting orbits in 3D-ODES (II) : Cycle-to-Cycle Connections , 2008, Int. J. Bifurc. Chaos.
[2] Fabio Dercole. BPCONT: An Auto Driver for the Continuation of Branch Points of Algebraic and Boundary-Value Problems , 2008, SIAM J. Sci. Comput..
[3] Yuri A. Kuznetsov,et al. Continuation of Connecting orbits in 3D-ODES (I): Point-to-Cycle Connections , 2007, Int. J. Bifurc. Chaos.
[4] Edgar Knobloch,et al. When Shil'nikov Meets Hopf in Excitable Systems , 2007, SIAM J. Appl. Dyn. Syst..
[5] Bernd Krauskopf,et al. Numerical Continuation Methods for Dynamical Systems , 2007 .
[6] Eusebius J. Doedel,et al. Lecture Notes on Numerical Analysis of Nonlinear Equations , 2007 .
[7] Bernd Krauskopf,et al. Global bifurcations of the Lorenz manifold , 2006 .
[8] Bernd Krauskopf,et al. Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation , 2006 .
[9] Jens D. M. Rademacher,et al. Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit , 2005 .
[10] Daan Lenstra,et al. The dynamical complexity of optically injected semiconductor lasers , 2005 .
[11] Sebastian Wieczorek,et al. Bifurcations of n-homoclinic orbits in optically injected lasers , 2005 .
[12] Bernd Krauskopf,et al. Computing One-Dimensional Global Manifolds of Poincaré Maps by Continuation , 2005, SIAM J. Appl. Dyn. Syst..
[13] Luca Dieci,et al. Erratum: Point-to-Periodic and Periodic-to-Periodic Connections , 2004 .
[14] Rob Sturman,et al. Two-state intermittency near a symmetric interaction of saddle-node and Hopf bifurcations: a case study from dynamo theory , 2004 .
[15] L. Dieci,et al. Point-to-Periodic and Periodic-to-Periodic Connections , 2004 .
[16] P. Xu,et al. The Existence of Silnikov's Orbit in Four-dimensional Duffing's Systems , 2003 .
[17] Alan R. Champneys,et al. Homoclinic Branch Switching: a Numerical Implementation of Lin's Method , 2003, Int. J. Bifurc. Chaos.
[18] R. Vitolo. Bifurcations of attractors in 3D diffeomorphisms : a study in experimental mathematics , 2003 .
[19] Thorsten Pampel,et al. Numerical approximation of connecting orbits with asymptotic rate , 2001, Numerische Mathematik.
[20] Kurt Lust,et al. Improved numerical Floquet Multipliers , 2001, Int. J. Bifurc. Chaos.
[21] Global bifurcations in a laser with injected signal: Beyond Adler's approximation. , 2001, Chaos.
[22] A. Yew,et al. Multipulses of Nonlinearly-coupled Schrr Odinger Equations , 1999 .
[23] James Demmel,et al. Computing Connecting Orbits via an Improved Algorithm for Continuing Invariant Subspaces , 2000, SIAM J. Sci. Comput..
[24] Daan Lenstra,et al. Tori and their bifurcations in an optically injected semiconductor laser , 1998 .
[25] Y. Kuznetsov. Elements of applied bifurcation theory (2nd ed.) , 1998 .
[26] Thomas F. Fairgrieve,et al. AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .
[27] Björn Sandstede,et al. A numerical toolbox for homoclinic bifurcation analysis , 1996 .
[28] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[29] S. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .
[30] Wolf-Jürgen Beyn,et al. On well-posed problems for connecting orbits in dynamical systems , 1994 .
[31] P. Hirschberg,et al. Sbil'nikov-Hopf bifurcation , 1993 .
[32] Mark J. Friedman,et al. Computational methods for global analysis of homoclinic and heteroclinic orbits: A case study , 1993 .
[33] J. Alexander,et al. Dynamic bifurcations in a power system model exhibiting voltage collapse , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.
[34] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[35] Xiao-Biao Lin,et al. Using Melnikov's method to solve Silnikov's problems , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[36] Mark J. Friedman,et al. Numerical computation of heteroclinic orbits , 1989 .
[37] S. A. Robertson,et al. NONLINEAR OSCILLATIONS, DYNAMICAL SYSTEMS, AND BIFURCATIONS OF VECTOR FIELDS (Applied Mathematical Sciences, 42) , 1984 .
[38] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[39] C. Sparrow. The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .
[40] H. B. Keller,et al. Boundary Value Problems on Semi-Infinite Intervals and Their Numerical Solution , 1980 .
[41] E. Lorenz. Deterministic nonperiodic flow , 1963 .