Syngas from sugarcane pyrolysis: an experimental study for fuel cell applications.

The use of biomass for the production of electrical energy is a promising technological solution for those countries where there are problems with the disposal of agricultural waste and/or the production of low-cost energy. The gasification and/or pyrolysis of the biomass produces a gas rich in hydrogen that can be used in a fuel cell system to produce electrical energy with reduced environmental impact and significant energy recovery.

[1]  B Bosio Concentration polarisation in heterogeneous electrochemical reactions: a consistent kinetic evaluation and its application to molten carbonate fuel cells , 2003 .

[2]  Barbara Bosio,et al.  Preliminary experimental and theoretical analysis of limit performance of molten carbonate fuel cells , 2001 .

[3]  J. Moreira,et al.  The alcohol program , 1999 .

[4]  Barbara Bosio,et al.  Optimisation of the cell shape for industrial MCFC stacks , 2000 .

[5]  F. R. McLarnon,et al.  Fuel cells: A handbook , 1988 .

[6]  Pedro Anselmo Filho,et al.  Biomass resources for energy in North-Eastern Brazil , 2004 .

[7]  Barbara Bosio,et al.  Clean energy from sugarcane waste: feasibility study of an innovative application of bagasse and barbojo , 2003 .

[8]  Tianshou Zhao,et al.  Advances in Fuel Cells , 2014 .

[9]  Barbara Bosio,et al.  Modeling and experimentation of molten carbonate fuel cell reactors in a scale-up process , 1999 .

[10]  Francesco Calise,et al.  Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System , 2006 .

[11]  Janis Gravitis,et al.  Studies of the Brazilian sugarcane bagasse carbonisation process and products properties , 1999 .

[12]  Spyros Voutetakis,et al.  Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals , 2002 .

[13]  Electo Eduardo Silva Lora,et al.  Preliminary tests with a sugarcane bagasse fueled fluidized-bed air gasifier , 1999 .

[14]  Zhong-yang Luo,et al.  Biomass pyrolysis/gasification for product gas production: the overall investigation of parametric effects , 2003 .

[15]  J. C. Schouten,et al.  Exergy analysis of an integrated fuel processor and fuel cell (FP–FC) system , 2006 .

[16]  Petar Sabev Varbanov,et al.  Analysis and integration of fuel cell combined cycles for development of low-carbon energy technologies , 2008 .

[17]  J. Tascón,et al.  Composition of gases released during olive stones pyrolysis , 2002 .

[18]  J.-Y. Lim,et al.  Hydropyrolysis of sugar cane bagasse : effect of sample configuration on bio-oil yields and structures from two bench-scale reactors , 1999 .

[19]  Heejoon Kim,et al.  The reduction and control technology of tar during biomass gasification/pyrolysis: An overview , 2008 .

[20]  O. Braunbeck,et al.  Prospects for green cane harvesting and cane residue use in Brazil , 1999 .

[21]  Manfred Bischoff,et al.  Molten carbonate fuel cells: A high temperature fuel cell on the edge to commercialization , 2006 .

[22]  H. O. Florentino,et al.  Game theory in sugarcane crop residue and available energy optimization , 2003 .

[23]  R. Zanzi,et al.  Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass , 2001 .

[24]  A. Converti,et al.  SOLUBILIZATION OF LIGNIN COMPONENTS OF FOOD CONCERN FROM SUGARCANE BAGASSE BY ALKALINE HYDROLYSIS DISOLUCIÓN DE COMPONENTES LIGNÍNICOS DE INTERÉS ALIMENTARIO A PARTIR DE BAGAZO DE CAÑA DE AZÚCAR POR HIDRÓLISIS ALCALINA , 2007 .

[25]  Marco Baratieri,et al.  Process analysis of a molten carbonate fuel cell power plant fed with a biomass syngas , 2006 .

[26]  José M. Encinar,et al.  Steam gasification of Cynara cardunculus L.: influence of variables , 2002 .