The incipient infinite cluster in high-dimensional percolation

We announce our recent proof that, for independent bond percolation in high dimensions, the scaling limits of the incipient infinite cluster’s two-point and three-point functions are those of integrated super-Brownian excursion (ISE). The proof uses an extension of the lace expansion for percolation.

[1]  M. Aizenman,et al.  Sharpness of the phase transition in percolation models , 1987 .

[2]  N. Madras,et al.  THE SELF-AVOIDING WALK , 2006 .

[3]  J. Spencer,et al.  Uniform boundedness of critical crossing probabilities implies hyperscaling , 1999 .

[4]  P. M. Lee,et al.  Random Walks and Random Environments: Volume 1: Random Walks , 1995 .

[5]  Gordon Slade,et al.  The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion , 2000 .

[6]  Harry Kesten,et al.  The incipient infinite cluster in two-dimensional percolation , 1986 .

[7]  Donald A. Dawson,et al.  Measure-Valued processes and renormalization of branching particle systems , 1999 .

[8]  Gordon Slade,et al.  The Scaling Limit of the Incipient Infinite Cluster in High-Dimensional Percolation. I. Critical Exponents , 1999, math-ph/9903042.

[9]  Joel H. Spencer,et al.  Uniform boundedness of critical crossing probabilities implies hyperscaling , 1999, Random Struct. Algorithms.

[10]  Michael Aizenman,et al.  Percolation Critical Exponents Under the Triangle Condition , 1991 .

[11]  Gordon Slade,et al.  Mean-Field Behaviour and the Lace Expansion , 1994 .

[12]  H. Poincaré,et al.  Percolation ? , 1982 .

[13]  Gordon Slade,et al.  The number and size of branched polymers in high dimensions , 1992 .

[14]  David Aldous,et al.  Tree-based models for random distribution of mass , 1993 .

[15]  Michael Aizenman,et al.  On the Number of Incipient Spanning Clusters , 1997 .

[16]  Charles M. Newman,et al.  Tree graph inequalities and critical behavior in percolation models , 1984 .

[17]  Christian Borgs,et al.  The Birth of the Infinite Cluster:¶Finite-Size Scaling in Percolation , 2001 .

[18]  G. Slade,et al.  Mean-field critical behaviour for percolation in high dimensions , 1990 .

[19]  Gordon Slade,et al.  The Scaling Limit of Lattice Trees in High Dimensions , 1998 .

[20]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[21]  Gordon Slade,et al.  Lattice trees and super-Brownian motion , 1997, Canadian Mathematical Bulletin.

[22]  Jack F. Douglas,et al.  Random walks and random environments, vol. 2, random environments , 1997 .

[23]  T. ChayestO,et al.  Inhomogeneous percolation problems and incipient infinite clusters , 2022 .

[24]  H. Kesten Percolation theory for mathematicians , 1982 .

[25]  J. Gall The uniform random tree in a Brownian excursion , 1993 .