Carbon sinks and tropical forest biomass estimation: a review on role of remote sensing in aboveground-biomass modelling

Tropical forest embraces a large stock of carbon and contributes to the enormous amount of above- and below-ground biomass and the global carbon cycle. The carbon kept in the above-ground living biomass of trees is typically the largest pool and the most directly impacted by deforestation and degradation. Hence, quantifying carbon stock and fluxes from tropical forests by estimating the above-ground forest biomass is the critical step that will be investigated further in this paper. Remote sensing technology can provide many advantages in quantifying and mapping forest structure and monitoring and mapping above-ground biomass, and is both temporally and spatially accurate. Therefore, a good data-set of biomass which comprises canopy height and canopy structure can provide carbon sequestration potential for forest reserves. This paper reviews a thorough research of biomass estimation using remote sensing and geospatial technologies.

[1]  R. I. Lumbres,et al.  Aboveground biomass mapping of La Trinidad forests in Benguet, Philippines, using Landsat Thematic Mapper data and k-nearest neighbor method , 2014 .

[2]  J. Reitberger,et al.  3D segmentation of single trees exploiting full waveform LIDAR data , 2009 .

[3]  Doreen S. Boyd,et al.  Forest disturbance and regeneration: a mosaic of discrete gap dynamics and open matrix regimes? , 2014 .

[4]  K. M. Ngo,et al.  Carbon stocks in primary and secondary tropical forests in Singapore , 2013 .

[5]  G. Asner,et al.  Environmental and Biotic Controls over Aboveground Biomass Throughout a Tropical Rain Forest , 2009, Ecosystems.

[6]  G. Asner,et al.  Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric , 2014 .

[7]  Jungho Im,et al.  Forest biomass estimation from airborne LiDAR data using machine learning approaches , 2012 .

[8]  Nicholas C. Coops,et al.  Mapping Above- and Below-Ground Biomass Components in Subtropical Forests Using Small-Footprint LiDAR , 2014 .

[9]  Florian Siegert,et al.  Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[10]  Hideki Saito,et al.  Estimating above-ground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR , 2014 .

[11]  G. Foody,et al.  Estimating tropical forest biomass with a combination of SAR image texture and Landsat TM data: An assessment of predictions between regions , 2012 .

[12]  M. Marques,et al.  How much carbon is sequestered during the restoration of tropical forests? Estimates from tree species in the Brazilian Atlantic forest , 2014 .

[13]  Helen Amanda Fricker,et al.  The ICESat-2 Laser Altimetry Mission , 2010, Proceedings of the IEEE.

[14]  A. Baccini,et al.  Improving pantropical forest carbon maps with airborne LiDAR sampling , 2013 .

[15]  W. Cohen,et al.  Lidar Remote Sensing for Ecosystem Studies , 2002 .

[16]  J. Heikkinen,et al.  Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery , 2007 .

[17]  Warren B. Cohen,et al.  Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models , 2012 .

[18]  Na Yin,et al.  Estimating Forest Aboveground Biomass by Combining ALOS PALSAR and WorldView-2 Data: A Case Study at Purple Mountain National Park, Nanjing, China , 2014, Remote. Sens..

[19]  Peter van Oosterom,et al.  Advances in Spatial Data Handling , 2002, Springer Berlin Heidelberg.

[20]  W. Ju,et al.  Combining remote sensing imagery and forest age inventory for biomass mapping. , 2007, Journal of environmental management.

[21]  Louis V. Verchot,et al.  Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia , 2013 .

[22]  S. Popescu,et al.  Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .

[23]  B. Žalik,et al.  An efficient approach to 3D single tree-crown delineation in LiDAR data , 2015 .

[24]  Paulo Mesquita,et al.  Biomass estimation with high resolution satellite images: A case study of Quercus rotundifolia , 2015 .

[25]  Guoqing Sun,et al.  Mapping biomass change after forest disturbance: Applying LiDAR footprint-derived models at key map scales , 2013 .

[26]  Carmen Quintano Pastor,et al.  Estimation of aboveground biomass in Mediterranean forests by statistical modelling of ASTER fraction images , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[27]  D. Roberts,et al.  Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors , 2011 .

[28]  Linhai Jing,et al.  An individual tree crown delineation method based on multi-scale segmentation of imagery , 2012 .

[29]  Pavel Propastin,et al.  Modifying geographically weighted regression for estimating aboveground biomass in tropical rainforests by multispectral remote sensing data , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[30]  Q. Guo,et al.  A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data , 2014 .

[31]  P. West Tree and Forest Measurement , 2003, Springer International Publishing.

[32]  Juan Saldarriaga,et al.  Tree above-ground biomass allometries for carbon stocks estimation in the natural forests of Colombia , 2012 .

[33]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[34]  Jungho Im,et al.  Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study Over Huntington Wildlife Forest in the Adirondack Park , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[35]  S. Popescu,et al.  Satellite lidar vs. small footprint airborne lidar: Comparing the accuracy of aboveground biomass estimates and forest structure metrics at footprint level , 2011 .

[36]  G. A. Blackburn,et al.  The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest , 2010, International journal of biometeorology.

[37]  M. Lefsky,et al.  Forest carbon densities and uncertainties from Lidar, QuickBird, and field measurements in California , 2010 .

[38]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[39]  Sandra Eckert,et al.  Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data , 2012, Remote. Sens..

[40]  Michael A. Wulder,et al.  Historical forest biomass dynamics modelled with Landsat spectral trajectories , 2014 .

[41]  B. Koch,et al.  Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: application of multiple optical/LiDAR-derived predictors , 2010 .

[42]  M. Nilsson,et al.  Regional forest biomass and wood volume estimation using satellite data and ancillary data , 1999 .

[43]  Guoqing Sun,et al.  Forest biomass mapping from lidar and radar synergies , 2011 .

[44]  Nandin-Erdene Tsendbazar,et al.  Evaluation of object-based image analysis techniques on very high-resolution satellite image for biomass estimation in a watershed of hilly forest of Nepal , 2014 .

[45]  K. Macdicken,et al.  Global Forest Resources Assessment 2015: how are the world's forests changing? , 2015 .

[46]  M. Neteler,et al.  Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps , 2011 .

[47]  Liviu Theodor Ene,et al.  Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data , 2014 .

[48]  Z. Latif Forest Microclimate Modelling Using Remotely Sensed Data , 2012 .

[49]  Robert G. Knox,et al.  The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire , 2006 .

[50]  E. Lindquist,et al.  Multiple remote sensing data sources for REDD+ monitoring , 2012 .

[51]  Lijuan Liu,et al.  A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems , 2016, Int. J. Digit. Earth.

[52]  Fabian Ewald Fassnacht,et al.  Forest structure modeling with combined airborne hyperspectral and LiDAR data , 2012 .

[53]  B. D. Jong,et al.  Carbon stocks and changes in tropical secondary forests of southern Mexico , 2014 .

[54]  P. S. Roy,et al.  Biomass estimation using satellite remote sensing data—An investigation on possible approaches for natural forest , 1996, Journal of Biosciences.

[55]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[56]  Sylvie Durrieu,et al.  PTrees: A point-based approach to forest tree extraction from lidar data , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[57]  Timo Tokola,et al.  Effect of field plot location on estimating tropical forest above-ground biomass in Nepal using airborne laser scanning data , 2014 .

[58]  Grégoire Vincent,et al.  Revisiting a universal airborne light detection and ranging approach for tropical forest carbon mapping: scaling-up from tree to stand to landscape , 2014, Oecologia.

[59]  J. V. Soares,et al.  Distribution of aboveground live biomass in the Amazon basin , 2007 .

[60]  Maxim Neumann,et al.  Detecting tropical forest biomass dynamics from repeated airborne lidar measurements , 2013 .

[61]  M. Keller,et al.  Tree height and tropical forest biomass estimation , 2013 .

[62]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[63]  George Vosselman,et al.  Airborne and terrestrial laser scanning , 2011, Int. J. Digit. Earth.

[64]  Göran Ståhl,et al.  Estimating biomass in Hedmark County, Norway using national forest inventory field plots and airborne laser scanning , 2012 .

[65]  Frédéric Achard,et al.  Change in tropical forest cover of Southeast Asia from 1990 to 2010 , 2013 .

[66]  E. Næsset,et al.  Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data , 2010 .

[67]  A. Hudak,et al.  Using climate-FVS to project landscape-level forest carbon stores for 100 years from field and LiDAR measures of initial conditions , 2014, Carbon Balance and Management.

[68]  Bo Wu,et al.  Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China , 2015 .

[69]  J. Terborgh,et al.  Tree height integrated into pantropical forest biomass estimates , 2012 .

[70]  Pavan Kumar,et al.  Geospatial Strategy for Tropical Forest-Wildlife Reserve Biomass Estimation , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[71]  Michael A. Lefsky,et al.  Modeling canopy height in a savanna ecosystem using spaceborne lidar waveforms , 2014 .

[72]  Erxue Chen,et al.  Above-Ground Biomass and Biomass Components Estimation Using LiDAR Data in a Coniferous Forest , 2013 .

[73]  Q. Ketterings,et al.  Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests , 2001 .

[74]  Florian Hartig,et al.  Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass , 2014 .

[75]  Göran Ståhl,et al.  Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach , 2012 .

[76]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[77]  Andrew K. Skidmore,et al.  Allometric equations for estimating the above-ground biomass in tropical lowland Dipterocarp forests , 2009 .

[78]  Ryan J. Frazier,et al.  Characterization of aboveground biomass in an unmanaged boreal forest using Landsat temporal segmentation metrics , 2014 .

[79]  A. Faaij,et al.  Analysis of biophysical and anthropogenic variables and their relation to the regional spatial variation of aboveground biomass illustrated for North and East Kalimantan, Borneo , 2014, Carbon Balance and Management.

[80]  Cuizhen Wang,et al.  Biophysical estimation in tropical forests using JERS‐1 SAR and VNIR imagery. II. Aboveground woody biomass , 2008 .

[81]  R. Dubayah,et al.  Integrating waveform lidar with hyperspectral imagery for inventory of a northern temperate forest , 2008 .

[82]  Philippe Lejeune,et al.  Tree allometry in Central Africa: Testing the validity of pantropical multi-species allometric equations for estimating biomass and carbon stocks , 2013 .

[83]  Grégoire Vincent,et al.  Accuracy of small footprint airborne LiDAR in its predictions of tropical moist forest stand structure , 2012 .

[84]  Arturo Sanchez-Azofeifa,et al.  Estimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada , 2015, Remote. Sens..

[85]  Eben N. Broadbent,et al.  Remote Sensing of Aboveground Biomass in Tropical Secondary Forests: A Review , 2014 .

[86]  A. Lugo,et al.  Estimating biomass and biomass change of tropical forests , 1997 .

[87]  Giles M. Foody,et al.  Mapping the biomass of Bornean tropical rain forest from remotely sensed data , 2001 .

[88]  Guoqing Sun,et al.  Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR , 2013 .

[89]  T. Dawson,et al.  Quantifying forest above ground carbon content using LiDAR remote sensing , 2004 .

[90]  M. Batistella,et al.  Satellite estimation of aboveground biomass and impacts of forest stand structure , 2005 .

[91]  J. Terborgh,et al.  Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites , 2014, Global ecology and biogeography : a journal of macroecology.

[92]  Xiaolin Zhu,et al.  Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series , 2015 .

[93]  F. Bongers,et al.  Estimating carbon stock in secondary forests: Decisions and uncertainties associated with allometric biomass models , 2011 .

[94]  Roberta E. Martin,et al.  A Tale of Two “Forests”: Random Forest Machine Learning Aids Tropical Forest Carbon Mapping , 2014, PloS one.

[95]  J. Eitel,et al.  Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys , 2012 .

[96]  Xu Aigong,et al.  Integration of WorldView-2 and airborne LiDAR data for tree species level carbon stock mapping in Kayar Khola watershed, Nepal , 2015, Int. J. Appl. Earth Obs. Geoinformation.

[97]  D. Burslem,et al.  Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data , 2011 .

[98]  J. Chambers,et al.  Tree allometry and improved estimation of carbon stocks and balance in tropical forests , 2005, Oecologia.

[99]  M. Weir,et al.  Quantification of carbon stock to understand two different forest management regimes in Kayar Khola watershed, Chitwan, Nepal , 2014, Journal of the Indian Society of Remote Sensing.

[100]  Francesco Pirotti,et al.  Analysis of full-waveform LiDAR data for forestry applications: a review of investigations and methods , 2011 .

[101]  Dengsheng Lu,et al.  Above-Ground Biomass Estimation of Successional and Mature Forests Using TM Images in the Amazon Basin , 2002 .

[102]  Sandra A. Brown,et al.  Monitoring and estimating tropical forest carbon stocks: making REDD a reality , 2007 .

[103]  P. Gong,et al.  Isolating individual trees in a savanna woodland using small footprint lidar data , 2006 .