Modelling of fluid-structure interaction for moderate reynolds number flows using an immersed-body method

Abstract An unsteady Reynolds-averaged Navier–Stokes (URANS) model coupled with an immersed-body method is used to model fluid-structure interaction (FSI) for moderate Reynolds number flows. Particular attention is paid to the application of suitable flow boundary conditions with the immersed-body method. This model couples a combined finite-discrete element solid model and a finite element fluid model with the standard k − e model. A thin shell mesh surrounding the solid surface is first used as a delta function to apply the interface boundary conditions for both the URANS model and the momentum equation. In order to reduce the computational cost, a log-law wall function is used within this thin shell to resolve the flow near the solid wall. To improve the accuracy of the wall function, a novel shell mesh external-surface intersection approach is introduced to identify sharp solid-fluid interfaces. More importantly, an unstructured anisotropic mesh adaptivity is used to refine the mesh according to the interface and the velocity, which improves the accuracy of this immersed-body URANS model with use of a limited number of fluid cells. This immersed-body URANS method is validated by several test cases and results are in good agreement with both experimental and numerical data from the literature.

[1]  Alvaro L. G. A. Coutinho,et al.  A stabilized finite element procedure for turbulent fluid–structure interaction using adaptive time–space refinement , 2004 .

[2]  C. Williamson,et al.  The effect of Reynolds number on the dynamics and wakes of freely rising and falling spheres , 2010, Journal of Fluid Mechanics.

[3]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[4]  F. Sotiropoulos,et al.  Immersed boundary methods for simulating fluid-structure interaction , 2014 .

[5]  E. Lamballais,et al.  Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900 , 2008 .

[6]  P. Moin,et al.  A numerical method for large-eddy simulation in complex geometries , 2004 .

[7]  Dimitrios Pavlidis,et al.  The immersed-body gas-solid interaction model for blast analysis in fractured solid media , 2017 .

[8]  Nikolaus A. Adams,et al.  A conservative immersed interface method for Large-Eddy Simulation of incompressible flows , 2010, J. Comput. Phys..

[9]  Min Chen,et al.  A non-intrusive reduced-order model for compressible fluid and fractured solid coupling and its application to blasting , 2017, J. Comput. Phys..

[10]  Rajat Mittal,et al.  Progress on LES of Flow Past a Circular Cylinder , 1996 .

[11]  F. Capizzano Turbulent Wall Model for Immersed Boundary Methods , 2011 .

[12]  B. J. Mason,et al.  The behaviour of freely falling cylinders and cones in a viscous fluid , 1965, Journal of Fluid Mechanics.

[13]  Michele Napolitano,et al.  AN IMMERSED-BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOWS , 2006 .

[14]  B. Khoo,et al.  An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains , 2008 .

[15]  James P. Johnson,et al.  Simulations of High Reynolds Number Air Flow Over the NACA-0012 Airfoil Using the Immersed Boundary Method , 2014 .

[16]  G. Iaccarino,et al.  Wall modeling for large-eddy simulation using an immersed boundary method , 2022 .

[17]  Antonio J. Gil,et al.  On continuum immersed strategies for Fluid-Structure Interaction , 2012 .

[18]  Jung Yul Yoo,et al.  Discretization errors in large eddy simulation: on the suitability of centered and upwind-biased compact difference schemes , 2004 .

[19]  I. Borazjani Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves , 2013 .

[20]  Jörg Franke,et al.  Large eddy simulation of the flow past a circular cylinder at ReD=3900 , 2002 .

[21]  Chunning Ji,et al.  A novel iterative direct-forcing immersed boundary method and its finite volume applications , 2012, J. Comput. Phys..

[22]  Chalmers Tekniska Högskola EFFECTS OF REYNOLDS NUMBER AND A LOW-INTENSITY FREESTREAM TURBULENCE ON THE FLOW AROUND A CIRCULAR CYLINDER , 1987 .

[23]  Patrick E. Farrell The addition of fields on different meshes , 2011, J. Comput. Phys..

[24]  M. Uhlmann An immersed boundary method with direct forcing for the simulation of particulate flows , 2005, 1809.08170.

[25]  Pietro De Palma,et al.  An immersed boundary method for compressible flows using local grid refinement , 2007, J. Comput. Phys..

[26]  Nikolaus A. Adams,et al.  Assessment of Implicit Large-Eddy Simulation with a conservative immersed interface method for turbulent cylinder flow , 2010 .

[27]  P. Moin,et al.  Numerical experiments on the flow past A circular cylinder at sub-critical reynolds number , 1994 .

[28]  Fotis Sotiropoulos,et al.  Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine , 2012 .

[29]  J. Wallace,et al.  The velocity field of the turbulent very near wake of a circular cylinder , 1996 .

[30]  Dimitrios Pavlidis,et al.  Compressive advection and multi‐component methods for interface‐capturing , 2016 .

[31]  Gianluca Iaccarino,et al.  Numerical Investigation of Road Vehicle Aerodynamics Using the Immersed Boundary RANS Approach , 2005 .

[32]  P. Moin,et al.  Numerical studies of flow over a circular cylinder at ReD=3900 , 2000 .

[33]  Yong-Sik Cho,et al.  Immersed Boundary Method for Compressible High-Reynolds Number Viscous Flow around Moving Bodies , 2007 .

[34]  Jianren Fan,et al.  A modified immersed boundary method for simulations of fluid–particle interactions , 2007 .

[35]  C. C. Pain,et al.  A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling , 2008, 0805.4380.

[36]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[37]  S. Sherwin,et al.  Comparison of various fluid-structure interaction methods for deformable bodies , 2007 .

[38]  Peter Freymuth,et al.  The vortex patterns of dynamic separation: A parametric and comparative study , 1985 .

[39]  P. Moin,et al.  Accurate Immersed-Boundary Reconstructions for Viscous Flow Simulations , 2009 .

[40]  P. Morris,et al.  Immersed Boundary Method for Viscous Flow Around Moving Bodies , 2006 .

[41]  Christopher C. Pain,et al.  Modelling of fluid-structure interaction with multiphase viscous flows using an immersed-body method , 2016, J. Comput. Phys..

[42]  John M. Stockie,et al.  Simulating flexible fiber suspensions using a scalable immersed boundary algorithm , 2014, ArXiv.

[43]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[44]  D. Wilcox Turbulence modeling for CFD , 1993 .

[45]  J. Soria,et al.  Accelerated flow past a symmetric aerofoil: experiments and computations , 2007, Journal of Fluid Mechanics.

[46]  Christopher C. Pain,et al.  Non-intrusive reduced order modelling of fluid–structure interactions , 2016 .

[47]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[48]  S. Mittal,et al.  Flow past a cylinder: shear layer instability and drag crisis , 2005 .

[49]  Takeo Kajishima,et al.  Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations , 2007, J. Comput. Phys..

[50]  Joel H. Ferziger,et al.  Computational methods for fluid dynamics , 1996 .

[51]  Rainald Löhner,et al.  Adaptive embedded and immersed unstructured grid techniques , 2008 .

[52]  P. P. Brown,et al.  Sphere Drag and Settling Velocity Revisited , 2003 .

[53]  W. Rodi,et al.  Large Eddy Simulation of Flow around Circular Cylinders on Structured and Unstructured Grids , 2004 .

[54]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[55]  J. Edwards,et al.  Numerical simulations of effects of micro vortex generators using immersed-boundary methods , 2010 .

[56]  Thomas J. Hanratty,et al.  Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 × 103 to 105 , 1969, Journal of Fluid Mechanics.

[57]  A. Munjiza The Combined Finite-Discrete Element Method , 2004 .

[58]  L. Lourenço,et al.  Characteristics of the Plane Turbulent Near Wake of a Circular Cylinder , 1993 .

[59]  Sumanta Acharya,et al.  Simulation of laminar and turbulent impeller stirred tanks using immersed boundary method and large eddy simulation technique in multi-block curvilinear geometries , 2007 .

[60]  Frederick Stern,et al.  Sharp interface immersed-boundary/level-set method for wave-body interactions , 2009, J. Comput. Phys..

[61]  J. Fröhlich,et al.  A simple wall-layer model for large eddy simulation with immersed boundary method , 2009 .

[62]  Jack R. Edwards,et al.  RANS and Hybrid LES/ RANS Simulations of the Effects of Micro Vortex Generators Using Immersed Boundary Methods , 2008 .

[63]  Daryl B. Simons,et al.  The behavior of large particles falling in quiescent liquids , 1969 .

[64]  J. Fröhlich,et al.  Large Eddy Simulation of Flow around Circular Cylinders on Structured and Unstructured Grids, II , 2001 .

[65]  C. Williamson,et al.  Dynamics of a rising and falling cylinder , 2006 .

[66]  A Viré,et al.  An immersed-shell method for modelling fluid–structure interactions , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[67]  J. Ferziger,et al.  A ghost-cell immersed boundary method for flow in complex geometry , 2002 .

[68]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[69]  Elias Balaras,et al.  An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries , 2006, J. Comput. Phys..

[70]  K. Mahesh,et al.  Numerical investigation of near-wake characteristics of cavitating flow over a circular cylinder , 2016, Journal of Fluid Mechanics.

[71]  R. Verzicco,et al.  Combined Immersed Boundary/Large-Eddy-Simulations of Incompressible Three Dimensional Complex Flows , 2006 .

[72]  Jiansheng Xiang,et al.  Finite strain, finite rotation quadratic tetrahedral element for the combined finite–discrete element method , 2009 .

[73]  Rajat Mittal,et al.  A sharp interface immersed boundary method for compressible viscous flows , 2007, J. Comput. Phys..

[74]  S. Acharya,et al.  Large eddy simulation of turbulent flows in complex and moving rigid geometries using the immersed boundary method , 2005 .