Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium

James R. Tribble | Jiun L. Do | David J. Calkins | Jonathan R. Soucy | D. Zack | T. Badea | A. Kolodkin | J. Sivak | K. Vinnakota | H. Quigley | A. Di Polo | Ephraim F. Trakhtenberg | K. Gokoffski | L. Moons | Rebecca M. Sappington | D. Calkins | B. Alapure | Mandeep Singh | S. Liddelow | T. Reh | N. Marsh-Armstrong | B. Frankfort | D. Welsbie | M. Vidal-Sanz | D. Križaj | A. La Torre | R. Giger | D. Gamm | J. Mumm | Mollie B. Woodworth | M. Veldman | L. Alarcon-Martinez | K. Peynshaert | Kin-Sang Cho | B. Samuels | Ajay Ashok | Pete A. Williams | K. Uyhazi | V. Chavali | A. Moshiri | W. Batchelor | T. Rex | L. De Groef | Preeti Subramanian | Petr Baranov | Aboozar Monavarfeshani | A. Fouda | Claire Ufongene | M. H. Geranmayeh | G. McLellan | Kang-Chieh Huang | J. Tribble | M. Gilhooley | P. Rasiah | Viviane M. Oliveira-Valença | Ahmara G. Ross | Marina Pavlou | Amberlynn A. Reed | S. Momin | Jeffrey L. Goldberg | Bryan Jones | A. Silva-Lepe | Benjamin Sivyer | H. A. Serhan | Meher A. Saleem | Sadaf Abed | M. V. Van Hook | Yvonne Ou | M. Peng | Julie Chen | Tasneem P. Sharma | Tasneem Z. Khatib | Diane E. Bovenkamp | Jonathan R. Soucy | Erika A. Aguzzi | Julie Cho | Michael James Gilhooley | Casey Keuthan | Ziming Luo | Aboozar Monavarfeshani | Xue-Wei Wang | Juilette Wohlschlegel | Abdelrahman Y. Ajay Ala Alain Amberlynn A. Amjad An-Jey A. Ann Fouda Ashok Moshiri Chedotal Reed Ask | Alain Chedotal | Amjad Askary | An-Jey A. Su | Archana Jalligampala | Arupratan Das | Barbara Wirostko | Brent Young | Brian Clark | Chase Hellmer | Claire Mitchell | D. Goldman | David Feldheim | David H. Gutmann | Diana C. Lozano | Dong Feng Chen | Elena Vecino Cordero | Feng Tian | Fengquan Zhou | Gillian J. McLellan | Jason Meyer | Jeff Gross | Jingliang Simon Zhang | Jiun L. Do | Jonathan Crowston | Julie Chen | Juliette McGregor | Keith Martin | Ken Muller | Kevin K. Park | Kun-Che Chang | Larry Benowitz | Leonard A. Levin | Levi Todd | Mariana S. Silveira | Melanie Samuel | Mengming Hu | Michael Young | Michel Cayouette | Mollie Woodworth | Monica Vetter | Qi N. Cui | Reem Amine | Richard Eva | Robert J. Johnston | Ross Ethier | Seth Blackshaw | Stella Mary | Stephen Atolagbe | Supraja Varadarajan | Tareq I. Nabhan | Thomas Brunner | Tom Greenwell | Trent Watkins | V. Vrathasha | Wai Lydia Tai | Wyndham M. Batchelor | Xian-Jie Yang | Yong Park | Yuan Pan | Petr Baranov | Brad Fortune | William Guido | Carol A. Mason | Brian C. Samuels | Thomas V. Johnson | Bhagwat V. Alapure | Trent A Watkins | Casey J Keuthan | D. F. Chen | Larry I. Benowitz | Claire H. Mitchell | Trent Watkins | Anna La Torre | V. Vrathasha | Alain Chédotal | Brent K. Young | Feng-Quan Zhou | Juliette McGregor | V. M. Oliveira-Valença | L. Benowitz | Juliette E Mcgregor | Jason S Meyer | Melanie A. Samuel

[1]  W. Guido,et al.  The Retinal Ganglion Cell Repopulation, Stem Cell Transplantation, & Optic Nerve Regeneration (RReSTORe) Consortium , 2023, Ophthalmology Science.

[2]  James R. Tribble,et al.  Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. , 2023, Molecular aspects of medicine.

[3]  G. Hardingham,et al.  Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration , 2023, Nature Reviews Neurology.

[4]  Jie Wu,et al.  Topical and systemic GLP-1R agonist administration both rescue retinal ganglion cells in hypertensive glaucoma , 2023, Frontiers in Cellular Neuroscience.

[5]  L. Moons,et al.  Immune stimulation recruits a subset of pro-regenerative macrophages to the retina that promotes axonal regrowth of injured neurons , 2023, Acta Neuropathologica Communications.

[6]  B. Roska,et al.  Multimodal spatiotemporal phenotyping of human retinal organoid development , 2023, Nature Biotechnology.

[7]  S. Blackshaw,et al.  Single-cell transcriptome analysis of xenotransplanted human retinal organoids defines two migratory cell populations of nonretinal origin , 2023, Stem cell reports.

[8]  Onkar S. Dhande,et al.  Postsynaptic neuronal activity promotes regeneration of retinal axons. , 2023, Cell reports.

[9]  L. De Groef,et al.  On the other end of the line: Extracellular vesicle-mediated communication in glaucoma , 2023, Frontiers in Neuroanatomy.

[10]  Ephraim F. Trakhtenberg,et al.  Pten inhibition dedifferentiates long-distance axon-regenerating intrinsically photosensitive retinal ganglion cells and upregulates mitochondria-associated Dynlt1a and Lars2 , 2023, Development.

[11]  Ephraim F. Trakhtenberg,et al.  Experimental gene expression of developmentally downregulated Crmp1, Crmp4, and Crmp5 promotes axon regeneration and retinal ganglion cell survival after optic nerve injury , 2023, Brain Research.

[12]  Ephraim F. Trakhtenberg,et al.  Post-injury born oligodendrocytes incorporate into the glial scar and contribute to the inhibition of axon regeneration , 2023, Development.

[13]  Jing Zhou,et al.  New AAV tools fail to detect Neurod1-mediated neuronal conversion of Müller glia and astrocytes in vivo , 2023, EBioMedicine.

[14]  D. Zack,et al.  The importance of unambiguous cell origin determination in neuronal repopulation studies. , 2023, iScience.

[15]  William H. Aisenberg,et al.  Molecular and metabolic heterogeneity of astrocytes and microglia. , 2023, Cell metabolism.

[16]  I. Ahmad,et al.  Human Retinal Ganglion Cells Respond to Evolutionarily Conserved Chemotropic Cues for Intra Retinal Guidance and Regeneration , 2023, bioRxiv.

[17]  Gerrit Hilgen,et al.  Incorporating microglia‐like cells in human induced pluripotent stem cell‐derived retinal organoids , 2023, Journal of cellular and molecular medicine.

[18]  Xinyu Zhao,et al.  Re-formation of synaptic connectivity in dissociated human stem cell-derived retinal organoid cultures , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Alexander-Katz,et al.  Mechano-Chemical Effect of Gelatin- and HA-Based Hydrogels on Human Retinal Progenitor Cells , 2023, Gels.

[20]  Yan Wang,et al.  Review: Myelin clearance is critical for regeneration after peripheral nerve injury , 2022, Frontiers in Neurology.

[21]  D. Zack,et al.  Internal limiting membrane disruption facilitates engraftment of transplanted human stem cell derived retinal ganglion cells , 2022, bioRxiv.

[22]  D. Goldman,et al.  Vegf signaling between Müller glia and vascular endothelial cells is regulated by immune cells and stimulates retina regeneration , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[23]  F. Rieke,et al.  Reprogramming Müller glia to regenerate ganglion-like cells in adult mouse retina with developmental transcription factors , 2022, Science advances.

[24]  Tuan Leng Tay,et al.  Microglia states and nomenclature: A field at its crossroads , 2022, Neuron.

[25]  Marius Wernig,et al.  Directly induced human retinal ganglion cells mimic fetal RGCs and are neuroprotective after transplantation in vivo , 2022, Stem cell reports.

[26]  B. Bell,et al.  Transplanted human induced pluripotent stem cells- derived retinal ganglion cells embed within mouse retinas and are electrophysiologically functional , 2022, iScience.

[27]  Jonathan R. Soucy,et al.  Introduced chemokine gradients guide transplanted and regenerated retinal neurons toward their natural position in the retina , 2022, bioRxiv.

[28]  Yaqing Ou,et al.  Advances in RIPK1 kinase inhibitors , 2022, Frontiers in Pharmacology.

[29]  A. Sher,et al.  Large-scale interrogation of retinal cell functions by 1-photon light-sheet microscopy , 2022, bioRxiv.

[30]  L. Benowitz,et al.  Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Injury: Role of Inflammation and Other Factors , 2022, International journal of molecular sciences.

[31]  Yanting Xia,et al.  Optic nerve injury models under varying forces , 2022, International Ophthalmology.

[32]  A. Barco,et al.  Multiomic Analysis of Neurons with Divergent Projection Patterns Identifies Novel Regulators of Axon Pathfinding , 2022, Advanced science.

[33]  Kevin K. Park,et al.  Subtype-specific survival and regeneration of retinal ganglion cells in response to injury , 2022, Frontiers in Cell and Developmental Biology.

[34]  Lei S. Qi,et al.  Single-cell transcriptome analysis of regenerating RGCs reveals potent glaucoma neural repair genes , 2022, Neuron.

[35]  Elaine E. Orendorff,et al.  Optogenetic targeting of AII amacrine cells restores retinal computations performed by the inner retina , 2022, bioRxiv.

[36]  S. Peirson,et al.  Functional integrity of visual coding following advanced photoreceptor degeneration , 2022, Current Biology.

[37]  K. Braeckmans,et al.  ICG-mediated photodisruption of the inner limiting membrane enhances retinal drug delivery. , 2022, Journal of controlled release : official journal of the Controlled Release Society.

[38]  W. Koh,et al.  Topographical pattern for neuronal tissue engineering , 2022, Journal of Industrial and Engineering Chemistry.

[39]  A. Clatworthy,et al.  Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world , 2022, Journal of Neuroinflammation.

[40]  R. Vento-Tormo,et al.  An introduction to spatial transcriptomics for biomedical research , 2022, Genome Medicine.

[41]  A. Sierra,et al.  Microglia and meningeal macrophages depletion delays the onset of experimental autoimmune encephalomyelitis , 2022, bioRxiv.

[42]  K. Farrow,et al.  Optic nerve injury-induced regeneration in the adult zebrafish is accompanied by spatiotemporal changes in mitochondrial dynamics , 2022, Neural regeneration research.

[43]  Takaaki Kuwajima,et al.  Differential Retinal Ganglion Cell Vulnerability, A Critical Clue for the Identification of Neuroprotective Genes in Glaucoma , 2022, Frontiers in Ophthalmology.

[44]  Chi Zhang,et al.  Astrocytes modulate neurodegenerative phenotypes associated with glaucoma in OPTN(E50K) human stem cell-derived retinal ganglion cells , 2022, Stem cell reports.

[45]  V. Uskoković,et al.  Brain-Derived Neurotrophic Factor-Mediated Neuroprotection in Glaucoma: A Review of Current State of the Art , 2022, Frontiers in Pharmacology.

[46]  J. Sinden,et al.  In vivo study to assess dosage of allogeneic pig retinal progenitor cells: Long‐term survival, engraftment, differentiation and safety , 2022, Journal of cellular and molecular medicine.

[47]  S. Blackshaw,et al.  Ectopic insert-dependent neuronal expression of GFAP promoter-driven AAV constructs in adult mouse retina , 2022, bioRxiv.

[48]  Ye Xie,et al.  Critical Examination of Müller Glia-Derived in vivo Neurogenesis in the Mouse Retina , 2022, Frontiers in Cell and Developmental Biology.

[49]  S. Peirson,et al.  A systematic comparison of optogenetic approaches to visual restoration , 2022, Molecular therapy. Methods & clinical development.

[50]  A. Rao,et al.  Visual function tests for glaucoma practice - What is relevant? , 2022, Indian journal of ophthalmology.

[51]  E. S. Ruthazer,et al.  Glia Regulate the Development, Function, and Plasticity of the Visual System From Retina to Cortex , 2022, Frontiers in Neural Circuits.

[52]  D. Geschwind,et al.  Core transcription programs controlling injury-induced neurodegeneration of retinal ganglion cells , 2022, Neuron.

[53]  J. Sanes,et al.  Overlapping transcriptional programs promote survival and axonal regeneration of injured retinal ganglion cells , 2022, Neuron.

[54]  A. Huberman,et al.  Central nervous system regeneration , 2022, Cell.

[55]  A. Alexander-Katz,et al.  A bioinspired gelatin-hyaluronic acid-based hybrid interpenetrating network for the enhancement of retinal ganglion cells replacement therapy , 2021, NPJ Regenerative medicine.

[56]  W. Cafferty,et al.  Dissociation of intact adult mouse cortical projection neurons for single-cell RNA-seq , 2021, STAR protocols.

[57]  L. Teixeira,et al.  Mapping retinal ganglion cell somas in a large-eyed glaucoma model , 2021, Molecular vision.

[58]  J. Liebmann,et al.  Nicotinamide and Pyruvate for Neuroenhancement in Open-Angle Glaucoma: A Phase 2 Randomized Clinical Trial. , 2021, JAMA ophthalmology.

[59]  D. Zack,et al.  CRISPR Generated SIX6 and POU4F2 Reporters Allow Identification of Brain and Optic Transcriptional Differences in Human PSC-Derived Organoids , 2021, Frontiers in Cell and Developmental Biology.

[60]  B. Chauhan,et al.  Age and intraocular pressure in murine experimental glaucoma , 2021, Progress in Retinal and Eye Research.

[61]  B. Barres,et al.  Neurotoxic reactive astrocytes induce cell death via saturated lipids , 2021, Nature.

[62]  Hongkui Zeng,et al.  Spatially resolved cell atlas of the mouse primary motor cortex by MERFISH , 2021, Nature.

[63]  F. Rieke,et al.  Efficient stimulation of retinal regeneration from Müller glia in adult mice using combinations of proneural bHLH transcription factors. , 2021, Cell reports.

[64]  J. Greenwood,et al.  The “Neuro-Glial-Vascular” Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction , 2021, Frontiers in Cell and Developmental Biology.

[65]  Ephraim F. Trakhtenberg,et al.  Developmentally upregulated transcriptional elongation factor a like 3 suppresses axon regeneration after optic nerve injury , 2021, Neuroscience Letters.

[66]  S. Kauschke,et al.  Human stem cell-based retina on chip as new translational model for validation of AAV retinal gene therapy vectors , 2021, Stem cell reports.

[67]  T. Reh,et al.  Human retinal model systems: Strengths, weaknesses, and future directions. , 2021, Developmental biology.

[68]  K. Gokoffski,et al.  Electrical Devices for Visual Restoration. , 2021, Survey of ophthalmology.

[69]  S. Tran,et al.  Recent Advances in Hydrogels: Ophthalmic Applications in Cell Delivery, Vitreous Substitutes, and Ocular Adhesives , 2021, Biomedicines.

[70]  Z. Ahmed,et al.  Effects of intravitreal injection of siRNA against caspase-2 on retinal and optic nerve degeneration in air blast induced ocular trauma , 2021, Scientific Reports.

[71]  S. Liddelow,et al.  Neuroinflammatory astrocyte subtypes in the mouse brain , 2021, Nature Neuroscience.

[72]  S. Bahrami,et al.  Translational insights into stem cell preconditioning: From molecular mechanisms to preclinical applications. , 2021, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.

[73]  G. Tezel Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets , 2021, Progress in Retinal and Eye Research.

[74]  Yiwen Hong,et al.  Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery , 2021, Pharmaceuticals.

[75]  Mengfei Chen,et al.  Scaffolds Facilitate Epiretinal Transplantation of hiPSC-Derived Retinal Neurons in Nonhuman Primates. , 2021, Acta biomaterialia.

[76]  F. Rieke,et al.  Conserved circuits for direction selectivity in the primate retina , 2021, Current Biology.

[77]  J. N. Kay,et al.  Seeing stars: Development and function of retinal astrocytes. , 2021, Developmental biology.

[78]  Yong Liu,et al.  Synaptic repair and vision restoration in advanced degenerating eyes by transplantation of retinal progenitor cells , 2021, Stem cell reports.

[79]  Zachary F. Jessen,et al.  Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression , 2021, bioRxiv.

[80]  T. V. Johnson,et al.  Retinal Ganglion Cell Transplantation: Approaches for Overcoming Challenges to Functional Integration , 2021, Cells.

[81]  Xiaodong Sun,et al.  The Interaction Between Microglia and Macroglia in Glaucoma , 2021, Frontiers in Neuroscience.

[82]  Jason S. Meyer,et al.  Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids , 2021, Stem cell reports.

[83]  J. Mollon,et al.  Retinal Ganglion Cells—Diversity of Cell Types and Clinical Relevance , 2021, Frontiers in Neurology.

[84]  J. Ge,et al.  Enhanced migration of engrafted retinal progenitor cells into the host retina via disruption of glial barriers , 2021, Molecular vision.

[85]  P. van Wijngaarden,et al.  Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets , 2021, Frontiers in Neurology.

[86]  Petr Baranov,et al.  Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas , 2021, Molecular therapy. Methods & clinical development.

[87]  N. Marsh-Armstrong,et al.  The basic science of optic nerve regeneration , 2021, Annals of translational medicine.

[88]  C. Sumen,et al.  Autologous Induced Pluripotent Stem Cell–Based Cell Therapies: Promise, Progress, and Challenges , 2021, Current protocols.

[89]  J. L. Mateo,et al.  BMP Signaling Interferes with Optic Chiasm Formation and Retinal Ganglion Cell Pathfinding in Zebrafish , 2021, bioRxiv.

[90]  J. Sanes,et al.  Turning lead into gold: reprogramming retinal cells to cure blindness. , 2021, The Journal of clinical investigation.

[91]  D. Hyde,et al.  The Regenerating Adult Zebrafish Retina Recapitulates Developmental Fate Specification Programs , 2021, Frontiers in Cell and Developmental Biology.

[92]  Y. Ou,et al.  Disassembly and rewiring of a mature converging excitatory circuit following injury , 2021, Cell reports.

[93]  C. Cadwell,et al.  Patch-seq: Past, Present, and Future , 2021, The Journal of Neuroscience.

[94]  D. Zack,et al.  Role of the Internal Limiting Membrane in Structural Engraftment and Topographic Spacing of Transplanted Human Stem Cell-Derived Retinal Ganglion Cells , 2020, Stem cell reports.

[95]  Pete A. Williams,et al.  Disturbed glucose and pyruvate metabolism in glaucoma with neuroprotection by pyruvate or rapamycin , 2020, Proceedings of the National Academy of Sciences.

[96]  Margarita V. Meer,et al.  Reprogramming to recover youthful epigenetic information and restore vision , 2020, Nature.

[97]  David J. Calkins,et al.  Protect, Repair, and Regenerate: Towards Restoring Vision in Glaucoma , 2020, Current Ophthalmology Reports.

[98]  F. Bradke,et al.  Faculty Opinions recommendation of Microglia-organized scar-free spinal cord repair in neonatal mice. , 2020, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[99]  Modupeore O. Adetunji,et al.  GLP-1 Receptor Agonist NLY01 Reduces Retinal Inflammation and Neuron Death Secondary to Ocular Hypertension , 2020, Cell reports.

[100]  James R. Tribble,et al.  Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction , 2020, bioRxiv.

[101]  K. Eliceiri,et al.  Microstructure and resident cell-types of the feline optic nerve head resemble that of humans. , 2020, Experimental eye research.

[102]  C. Baudouin,et al.  Inflammation in Glaucoma: From the back to the front of the eye, and beyond , 2020, Progress in Retinal and Eye Research.

[103]  B. Lu,et al.  Differential susceptibility of retinal ganglion cell subtypes in acute and chronic models of injury and disease , 2020, Scientific Reports.

[104]  Lili Hao,et al.  Quick Commitment and Efficient Reprogramming Route of Direct Induction of Retinal Ganglion Cell-like Neurons , 2020, Stem cell reports.

[105]  F. Rajaii,et al.  Gene regulatory networks controlling vertebrate retinal regeneration , 2020, Science.

[106]  H. Jayaram Intraocular pressure reduction in glaucoma: Does every mmHg count? , 2020, Taiwan journal of ophthalmology.

[107]  V. Rothhammer,et al.  Protective Functions of Reactive Astrocytes Following Central Nervous System Insult , 2020, Frontiers in Immunology.

[108]  M. Vetter,et al.  On the Generation and Regeneration of Retinal Ganglion Cells , 2020, Frontiers in Cell and Developmental Biology.

[109]  D. Zack,et al.  Human Organoids for the Study of Retinal Development and Disease. , 2020, Annual review of vision science.

[110]  L. Benowitz,et al.  Axon Regeneration in the Mammalian Optic Nerve. , 2020, Annual review of vision science.

[111]  A. Sehgal,et al.  Glial Metabolic Rewiring Promotes Axon Regeneration and Functional Recovery in the Central Nervous System. , 2020, Cell metabolism.

[112]  Rebecca F Stevenson,et al.  Neuromodulation of Glial Function During Neurodegeneration , 2020, Frontiers in Cellular Neuroscience.

[113]  A. Prasad,et al.  Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons , 2020, BMC Genomics.

[114]  H. Baier,et al.  Molecular classification of zebrafish retinal ganglion cells links genes to cell types to behavior , 2020, Neuron.

[115]  Pete A. Williams,et al.  Improvement in inner retinal function in glaucoma with nicotinamide (vitamin B3) supplementation: A crossover randomized clinical trial , 2020, Clinical and Experimental Ophthalmology.

[116]  Jennifer J. Hunter,et al.  Imaging Transplanted Photoreceptors in Living Nonhuman Primates with Single-Cell Resolution , 2020, Stem cell reports.

[117]  Gai-qing Wang,et al.  Interaction of Microglia and Astrocytes in the Neurovascular Unit , 2020, Frontiers in Immunology.

[118]  Kazuhiro Kurokawa,et al.  Cellular Scale Imaging of Transparent Retinal Structures and Processes Using Adaptive Optics Optical Coherence Tomography. , 2020, Annual review of vision science.

[119]  E. Grigoryan Potential Endogenous Cell Sources for Retinal Regeneration in Vertebrates and Humans: Progenitor Traits and Specialization , 2020, Biomedicines.

[120]  Haitao Fu,et al.  Depletion of microglia exacerbates injury and impairs function recovery after spinal cord injury in mice , 2020, Cell Death & Disease.

[121]  A. Huberman,et al.  Neurotoxic Reactive Astrocytes Drive Neuronal Death after Retinal Injury. , 2020, Cell reports.

[122]  Meng Niu,et al.  Mapping developmental trajectories and subtype diversity of normal and glaucomatous human retinal ganglion cells by single‐cell transcriptome analysis , 2020, Stem cells.

[123]  T. Baden,et al.  Zebrafish Retinal Ganglion Cells Asymmetrically Encode Spectral and Temporal Information across Visual Space , 2020, Current Biology.

[124]  Dong Won Kim,et al.  Atoh7-independent specification of retinal ganglion cell identity , 2020, Science Advances.

[125]  C. Mason,et al.  Retinal Ganglion Cell Axon Wiring Establishing the Binocular Circuit. , 2020, Annual review of vision science.

[126]  Yin Shen,et al.  Generation of self-organized sensory ganglion organoids and retinal ganglion cells from fibroblasts , 2020, Science Advances.

[127]  R. V. Rajala Aerobic Glycolysis in the Retina: Functional Roles of Pyruvate Kinase Isoforms , 2020, Frontiers in Cell and Developmental Biology.

[128]  J. Pokorny,et al.  Fifty Years Exploring the Visual System. , 2020, Annual review of vision science.

[129]  A. Ambrósio,et al.  Neuroprotective Strategies for Retinal Ganglion Cell Degeneration: Current Status and Challenges Ahead , 2020, International journal of molecular sciences.

[130]  J. Goldberg,et al.  Optic Nerve Crush in Mice to Study Retinal Ganglion Cell Survival and Regeneration. , 2020, Bio-protocol.

[131]  Abbot F. Clark,et al.  Inducible rodent models of glaucoma , 2020, Progress in Retinal and Eye Research.

[132]  N. Tian,et al.  The Susceptibility of Retinal Ganglion Cells to Optic Nerve Injury is Type Specific , 2020, Cells.

[133]  X. Mu,et al.  Single cell transcriptomics reveals lineage trajectory of retinal ganglion cells in wild-type and Atoh7-null retinas , 2020, Nature Communications.

[134]  D. Chen,et al.  Adaptive Immunity: New Aspects of Pathogenesis Underlying Neurodegeneration in Glaucoma and Optic Neuropathy , 2020, Frontiers in Immunology.

[135]  G. Nan,et al.  The effect of Matrigel as scaffold material for neural stem cell transplantation for treating spinal cord injury , 2020, Scientific Reports.

[136]  A. Regev,et al.  Cell Atlas of The Human Fovea and Peripheral Retina , 2020, bioRxiv.

[137]  Mikhail G. Shapiro,et al.  Genetically Encodable Contrast Agents for Optical Coherence Tomography. , 2020, ACS nano.

[138]  Cole Trapnell,et al.  Single-Cell Transcriptomic Comparison of Human Fetal Retina, hPSC-Derived Retinal Organoids, and Long-Term Retinal Cultures , 2020, Cell reports.

[139]  T. Harada,et al.  Role of animal models in glaucoma research , 2020, Neural regeneration research.

[140]  A. Maminishkis,et al.  Retinal Pigment Epithelium Replacement Therapy for Age-Related Macular Degeneration: Are We There Yet? , 2020, Annual review of pharmacology and toxicology.

[141]  Alexandra Rebsam,et al.  Neurogenesis and Specification of Retinal Ganglion Cells , 2020, International journal of molecular sciences.

[142]  T. Jakobs Glaucoma: methods and protocols , 2019 .

[143]  K. Gokoffski,et al.  Neuro-protection and neuro-regeneration of the optic nerve: recent advances and future directions. , 2019, Current opinion in neurology.

[144]  J. N. Kay,et al.  Thrombospondin-1 Promotes Circuit-Specific Synapse Formation via β1-Integrin , 2019, bioRxiv.

[145]  A. Reichenbach,et al.  Glia of the human retina , 2019, Glia.

[146]  L. Moons Fueling axonal regeneration: dendritic energy to the rescue? , 2019 .

[147]  Dierck Hillmann,et al.  Simultaneous functional imaging of neuronal and photoreceptor layers in living human retina. , 2019, Optics letters.

[148]  D. Zack,et al.  Targeted disruption of dual leucine zipper kinase and leucine zipper kinase promotes neuronal survival in a model of diffuse traumatic brain injury , 2019, Molecular Neurodegeneration.

[149]  Charles M. Lieber,et al.  Single-Cell Profiles of Retinal Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes , 2019, Neuron.

[150]  K. Martin,et al.  Expression of Developmentally Important Axon Guidance Cues in the Adult Optic Chiasm , 2019, Investigative ophthalmology & visual science.

[151]  Edoardo Midena,et al.  Optic Pathway Glioma in Type 1 Neurofibromatosis: Review of Its Pathogenesis, Diagnostic Assessment, and Treatment Recommendations , 2019, Cancers.

[152]  R. Nickells,et al.  BAX-Depleted Retinal Ganglion Cells Survive and Become Quiescent Following Optic Nerve Damage , 2019, Molecular Neurobiology.

[153]  S. Siniossoglou,et al.  Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration , 2019, Neuron.

[154]  C. Grimm,et al.  Correction to: Retinal pathology in experimental optic neuritis is characterized by retrograde degeneration and gliosis , 2019, Acta Neuropathologica Communications.

[155]  B. Cessac,et al.  A novel approach to the functional classification of retinal ganglion cells , 2019, bioRxiv.

[156]  Katja Schenke-Layland,et al.  Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform , 2019, eLife.

[157]  Ratnesh K Singh,et al.  Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in the Subretinal Space of the Cat Eye , 2019, Stem cells and development.

[158]  T. Langmann,et al.  Microglia in Retinal Degeneration , 2019, Front. Immunol..

[159]  K. J. Meyer,et al.  Effect of ocular hypertension on the pattern of retinal ganglion cell subtype loss in a mouse model of early-onset glaucoma. , 2019, Experimental eye research.

[160]  K. Gokoffski,et al.  Physiologic Electrical Fields Direct Retinal Ganglion Cell Axon Growth In Vitro , 2019, Investigative ophthalmology & visual science.

[161]  Jenna A Cava,et al.  Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology. , 2019, Experimental eye research.

[162]  S. Hattar,et al.  Thrombospondin-1 Mediates Axon Regeneration in Retinal Ganglion Cells , 2019, Neuron.

[163]  L. Erskine,et al.  Wiring the Binocular Visual Pathways , 2019, International journal of molecular sciences.

[164]  Manoj Kumar,et al.  INGE GRUNDKE-IQBAL AWARD FOR ALZHEIMER’S RESEARCH: NEUROTOXIC REACTIVE ASTROCYTES ARE INDUCED BY ACTIVATED MICROGLIA , 2019, Alzheimer's & Dementia.

[165]  V. Gorantla,et al.  Demonstration of technical feasibility and viability of whole eye transplantation in a rodent model. , 2019, Journal of plastic, reconstructive & aesthetic surgery : JPRAS.

[166]  M. Vidal-Sanz,et al.  Melanopsin+RGCs Are fully Resistant to NMDA-Induced Excitotoxicity , 2019, International journal of molecular sciences.

[167]  G. Govindaiah,et al.  Developmental Remodeling of Thalamic Interneurons Requires Retinal Signaling , 2019, The Journal of Neuroscience.

[168]  Hannah C. Webber,et al.  Silicone oil-induced ocular hypertension and glaucomatous neurodegeneration in mouse , 2019, eLife.

[169]  S. Takagi,et al.  Evaluation of Transplanted Autologous Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium in Exudative Age-Related Macular Degeneration. , 2019, Ophthalmology. Retina.

[170]  M. M. Benedetto,et al.  Oxidative Stress in Retinal Degeneration Promoted by Constant LED Light , 2019, Front. Cell. Neurosci..

[171]  N. Tian,et al.  The Susceptibility of Retinal Ganglion Cells to Glutamatergic Excitotoxicity Is Type-Specific , 2019, Front. Neurosci..

[172]  A. Komáromy,et al.  Primary angle-closure glaucoma with goniodysgenesis in a Beagle dog , 2019, BMC Veterinary Research.

[173]  M. Noble,et al.  4-Aminopyridine as a Single Agent Diagnostic and Treatment for Severe Nerve Crush Injury. , 2019, Military medicine.

[174]  S. D. De Smedt,et al.  Morphology and Composition of the Inner Limiting Membrane: Species-Specific Variations and Relevance toward Drug Delivery Research , 2019, Current eye research.

[175]  M. Vetter,et al.  Complement Targets Newborn Retinal Ganglion Cells for Phagocytic Elimination by Microglia , 2019, The Journal of Neuroscience.

[176]  R. Verwer,et al.  Human Brain Slice Culture: A Useful Tool to Study Brain Disorders and Potential Therapeutic Compounds , 2019, Neuroscience Bulletin.

[177]  Melissa C Skala,et al.  Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines , 2019, Development.

[178]  D. Gutmann,et al.  Insights into optic pathway glioma vision loss from mouse models of neurofibromatosis type 1 , 2019, Journal of neuroscience research.

[179]  Evan Z. Macosko,et al.  Single‐Cell RNA Sequencing of Microglia throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell‐State Changes , 2019, Immunity.

[180]  Andrew D Huberman,et al.  Assembly and repair of eye-to-brain connections , 2018, Current Opinion in Neurobiology.

[181]  Rasmus S. Petersen,et al.  Photoreceptive retinal ganglion cells control the information rate of the optic nerve , 2018, Proceedings of the National Academy of Sciences.

[182]  H. Weiner,et al.  Acute microglia ablation induces neurodegeneration in the somatosensory system , 2018, Nature Communications.

[183]  T. Harada,et al.  Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning , 2018, British Journal of Ophthalmology.

[184]  X. Xia,et al.  Did you choose appropriate tracer for retrograde tracing of retinal ganglion cells? The differences between cholera toxin subunit B and Fluorogold , 2018, PloS one.

[185]  D. Largaespada,et al.  Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1 , 2018, Communications Biology.

[186]  Ridhima Vij,et al.  Astrocytes Regulate the Development and Maturation of Retinal Ganglion Cells Derived from Human Pluripotent Stem Cells , 2018, bioRxiv.

[187]  K. Martin,et al.  Neuroprotection of retinal ganglion cells by a novel gene therapy construct that achieves sustained enhancement of brain-derived neurotrophic factor/tropomyosin-related kinase receptor-B signaling , 2018, Cell Death & Disease.

[188]  Jianzhu Chen,et al.  Commensal microflora-induced T cell responses mediate progressive neurodegeneration in glaucoma , 2018, Nature Communications.

[189]  Amyeo Jereen,et al.  Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes , 2018, Nature Communications.

[190]  I. Constable,et al.  Surgical Removal of Internal Limiting Membrane and Layering of AAV Vector on the Retina Under Air Enhances Gene Transfection in a Nonhuman Primate. , 2018, Investigative ophthalmology & visual science.

[191]  Xiao Yang,et al.  A method for single-neuron chronic recording from the retina in awake mice , 2018, Science.

[192]  P. Fisher,et al.  Methods and Protocols. , 2018, Current developments in nutrition.

[193]  A. Clark,et al.  Subtype-specific response of retinal ganglion cells to optic nerve crush , 2018, Cell Death Discovery.

[194]  R. Wong,et al.  Insulin signalling promotes dendrite and synapse regeneration and restores circuit function after axonal injury , 2018, Brain : a journal of neurology.

[195]  G. Swarup,et al.  Altered Functions and Interactions of Glaucoma-Associated Mutants of Optineurin , 2018, Front. Immunol..

[196]  Xiao Yang,et al.  Mesh electronics: a new paradigm for tissue-like brain probes , 2018, Current Opinion in Neurobiology.

[197]  Melissa F. Chimento,et al.  A Novel Tree Shrew (Tupaia belangeri) Model of Glaucoma , 2018, Investigative ophthalmology & visual science.

[198]  David J. Calkins,et al.  Astrocyte remodeling without gliosis precedes optic nerve Axonopathy , 2018, Acta neuropathologica communications.

[199]  Serena M. Dudek,et al.  Different Neuronal Activity Patterns Induce Different Gene Expression Programs , 2018, Neuron.

[200]  X. Xia,et al.  Advances in Retinal Optical Imaging , 2018, Photonics.

[201]  S. Shrader,et al.  Göttingen Minipigs in Ocular Research , 2018, Toxicologic pathology.

[202]  R. Dana,et al.  The Role of Microglia and Peripheral Monocytes in Retinal Damage after Corneal Chemical Injury. , 2018, The American journal of pathology.

[203]  Peng Jiang,et al.  Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells , 2018, Stem cell reports.

[204]  J. Goldberg,et al.  Induced Pluripotent Stem Cells Promote Retinal Ganglion Cell Survival After Transplant , 2018, Investigative ophthalmology & visual science.

[205]  David J. Calkins,et al.  Axogenic mechanism enhances retinal ganglion cell excitability during early progression in glaucoma , 2018, Proceedings of the National Academy of Sciences.

[206]  A. Pircher,et al.  Normal tension glaucoma: review of current understanding and mechanisms of the pathogenesis , 2018, Eye.

[207]  Jafar S. Jabbari,et al.  Single cell RNA sequencing of stem cell-derived retinal ganglion cells , 2018, Scientific Data.

[208]  L. Benowitz,et al.  Zinc chelation and Klf9 knockdown cooperatively promote axon regeneration after optic nerve injury , 2018, Experimental Neurology.

[209]  B. Chauhan,et al.  In vivo imaging of adeno-associated viral vector labelled retinal ganglion cells , 2018, Scientific Reports.

[210]  J. Chen,et al.  Melanopsin-expressing retinal ganglion cells are relatively resistant to excitotoxicity induced by N-methyl-d-aspartate , 2018, Neuroscience Letters.

[211]  Jingjing Wang,et al.  Formation of retinal direction-selective circuitry initiated by starburst amacrine cell homotypic contact , 2017, bioRxiv.

[212]  Donald T. Miller,et al.  Imaging and quantifying ganglion cells and other transparent neurons in the living human retina , 2017, Proceedings of the National Academy of Sciences.

[213]  D. Zack,et al.  Enhanced Stem Cell Differentiation and Immunopurification of Genome Engineered Human Retinal Ganglion Cells , 2017, Stem cells translational medicine.

[214]  J. Goldberg,et al.  KLF9 and JNK3 Interact to Suppress Axon Regeneration in the Adult CNS , 2017, The Journal of Neuroscience.

[215]  A. Harvey,et al.  Optic nerve regeneration in mammals: Regenerated or spared axons? , 2017, Experimental Neurology.

[216]  Steven T. Walston,et al.  GCaMP expression in retinal ganglion cells characterized using a low-cost fundus imaging system , 2017, Journal of neural engineering.

[217]  Xiaorong Liu,et al.  Different functional susceptibilities of mouse retinal ganglion cell subtypes to optic nerve crush injury , 2017, Experimental eye research.

[218]  J. Rothstein,et al.  Oligodendroglia: metabolic supporters of neurons. , 2017, The Journal of clinical investigation.

[219]  C. Cowan,et al.  Elevated IOP alters the space–time profiles in the center and surround of both ON and OFF RGCs in mouse , 2017, Proceedings of the National Academy of Sciences.

[220]  F. Rieke,et al.  Stimulation of functional neuronal regeneration from Müller glia in adult mice , 2017, Nature.

[221]  C. La Morgia,et al.  Optic neuropathies: the tip of the neurodegeneration iceberg , 2017, Human molecular genetics.

[222]  J. Salazar,et al.  The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma , 2017, Front. Aging Neurosci..

[223]  G. Whitworth,et al.  Translational profiling of retinal ganglion cell optic nerve regeneration in Xenopus laevis. , 2017, Developmental biology.

[224]  Bireswar Laha,et al.  Regenerating optic pathways from the eye to the brain , 2017, Science.

[225]  Xiao Yang,et al.  Syringe-injectable mesh electronics integrate seamlessly with minimal chronic immune response in the brain , 2017, Proceedings of the National Academy of Sciences.

[226]  Mark Ellisman,et al.  The cell of origin dictates the temporal course of neurofibromatosis-1 (Nf1) low-grade glioma formation , 2017, Oncotarget.

[227]  Y. Ou,et al.  Who's lost first? Susceptibility of retinal ganglion cell types in experimental glaucoma , 2017, Experimental eye research.

[228]  Pete A. Williams,et al.  Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice , 2017, Science.

[229]  J. Schuman,et al.  Whole-eye transplantation: a look into the past and vision for the future , 2017, Eye.

[230]  D. Williams,et al.  Regenerating reptile retinas: a comparative approach to restoring retinal ganglion cell function , 2017, Eye.

[231]  L. Benowitz,et al.  Reaching the brain: Advances in optic nerve regeneration , 2017, Experimental Neurology.

[232]  J. Vianna,et al.  Assessing retinal ganglion cell damage , 2017, Eye.

[233]  Jennifer J. Hunter,et al.  Imaging individual neurons in the retinal ganglion cell layer of the living eye , 2017, Proceedings of the National Academy of Sciences.

[234]  D. Gutmann,et al.  Estrogen activation of microglia underlies the sexually dimorphic differences in Nf1 optic glioma–induced retinal pathology , 2017, The Journal of experimental medicine.

[235]  D. Gutmann,et al.  Defining the temporal course of murine neurofibromatosis-1 optic gliomagenesis reveals a therapeutic window to attenuate retinal dysfunction , 2016, Neuro-oncology.

[236]  Jiawei Wang,et al.  Melanopsin-Containing or Non-Melanopsin-Containing Retinal Ganglion Cells Response to Acute Ocular Hypertension With or Without Brain-Derived Neurotrophic Factor Neuroprotection. , 2016, Investigative ophthalmology & visual science.

[237]  R. MacLaren,et al.  Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion , 2016, Nature Communications.

[238]  J. Morrison,et al.  Astrocyte Structural and Molecular Response to Elevated Intraocular Pressure Occurs Rapidly and Precedes Axonal Tubulin Rearrangement within the Optic Nerve Head in a Rat Model , 2016, PloS one.

[239]  M. Noble,et al.  4‐Aminopyridine promotes functional recovery and remyelination in acute peripheral nerve injury , 2016, EMBO molecular medicine.

[240]  Kwoon Y. Wong,et al.  Melanopsin-expressing, Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) , 2016 .

[241]  J. Boltze,et al.  Immunosuppression for in vivo research: state-of-the-art protocols and experimental approaches , 2016, Cellular & Molecular Immunology.

[242]  E. Benveniste,et al.  Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. , 2016, Clinical immunology.

[243]  David J. Calkins,et al.  Early astrocyte redistribution in the optic nerve precedes axonopathy in the DBA/2J mouse model of glaucoma. , 2016, Experimental eye research.

[244]  R. Wong,et al.  Selective Vulnerability of Specific Retinal Ganglion Cell Types and Synapses after Transient Ocular Hypertension , 2016, The Journal of Neuroscience.

[245]  C. Escartin,et al.  The complex STATes of astrocyte reactivity: How are they controlled by the JAK–STAT3 pathway? , 2016, Neuroscience.

[246]  E. Duh,et al.  A Mouse Model of Retinal Ischemia-Reperfusion Injury Through Elevation of Intraocular Pressure. , 2016, Journal of visualized experiments : JoVE.

[247]  Brian V Lien,et al.  Neural activity promotes long distance, target-specific regeneration of adult retinal axons , 2016, Nature Neuroscience.

[248]  Jihye Seong,et al.  Advanced Fluorescence Protein-Based Synapse-Detectors , 2016, Front. Synaptic Neurosci..

[249]  S Scott Whitmore,et al.  A Mutation in LTBP2 Causes Congenital Glaucoma in Domestic Cats (Felis catus) , 2016, PloS one.

[250]  D. Gutmann,et al.  NF1 germline mutation differentially dictates optic glioma formation and growth in neurofibromatosis-1. , 2016, Human molecular genetics.

[251]  Yan Ao,et al.  Astrocyte scar formation aids central nervous system axon regeneration , 2016, Nature.

[252]  Orly Liba,et al.  Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging , 2016, Scientific Reports.

[253]  Marius Wernig,et al.  Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds , 2016, Nature Communications.

[254]  Elena Vecino,et al.  Glia–neuron interactions in the mammalian retina , 2016, Progress in Retinal and Eye Research.

[255]  K. J. Muller,et al.  Transplanted neurons integrate into adult retinas and respond to light , 2016, Nature Communications.

[256]  Yifeng Zhang,et al.  Promoting axon regeneration in the adult CNS by modulation of the melanopsin/GPCR signaling , 2016, Proceedings of the National Academy of Sciences.

[257]  Peng Zhang,et al.  Selective reduction of fMRI responses to transient achromatic stimuli in the magnocellular layers of the LGN and the superficial layer of the SC of early glaucoma patients , 2016, Human brain mapping.

[258]  J. Sanes,et al.  Restoration of Visual Function by Enhancing Conduction in Regenerated Axons , 2016, Cell.

[259]  Huiguang He,et al.  Structural brain alterations in primary open angle glaucoma: a 3T MRI study , 2016, Scientific Reports.

[260]  H. Tomita,et al.  Retinal Cell Degeneration in Animal Models , 2016, International journal of molecular sciences.

[261]  G. A. Limb,et al.  Allogeneic Transplantation of Müller-Derived Retinal Ganglion Cells Improves Retinal Function in a Feline Model of Ganglion Cell Depletion , 2015, Stem cells translational medicine.

[262]  Jürgen Winkler,et al.  Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. , 2015, Cell stem cell.

[263]  V. Porciatti Electrophysiological assessment of retinal ganglion cell function. , 2015, Experimental eye research.

[264]  Matthias Bethge,et al.  The functional diversity of retinal ganglion cells in the mouse , 2015, Nature.

[265]  J. B. Demb,et al.  Functional Circuitry of the Retina. , 2015, Annual review of vision science.

[266]  Bing Huang,et al.  The immune response of stem cells in subretinal transplantation , 2015, Stem Cell Research & Therapy.

[267]  Paloma Sobrado-Calvo,et al.  Long-Term Effect of Optic Nerve Axotomy on the Retinal Ganglion Cell Layer. , 2015, Investigative ophthalmology & visual science.

[268]  Gregory F. Wu,et al.  Optic Neuritis: A Model for the Immuno-pathogenesis of Central Nervous System Inflammatory Demyelinating Diseases. , 2015, Current immunology reviews.

[269]  J. Sanes,et al.  The types of retinal ganglion cells: current status and implications for neuronal classification. , 2015, Annual review of neuroscience.

[270]  J. Fawcett,et al.  Influence of Extracellular Matrix Components on the Expression of Integrins and Regeneration of Adult Retinal Ganglion Cells , 2015, PloS one.

[271]  D. Gutmann,et al.  The impact of coexisting genetic mutations on murine optic glioma biology. , 2015, Neuro-oncology.

[272]  S. Sharma,et al.  Elevated Intraocular Pressure induces Ultrastructural Changes in the Trabecular Meshwork , 2015 .

[273]  David S. Williams,et al.  A Comparison of Some Organizational Characteristics of the Mouse Central Retina and the Human Macula , 2015, PloS one.

[274]  F. Gage,et al.  Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro , 2015, Proceedings of the National Academy of Sciences.

[275]  Dietmar Fischer,et al.  Characterization of optic nerve regeneration using transgenic zebrafish , 2015, Front. Cell. Neurosci..

[276]  E. L. West,et al.  Müller Glia Activation in Response to Inherited Retinal Degeneration Is Highly Varied and Disease-Specific , 2015, PloS one.

[277]  J. Sanes,et al.  Subtype-Specific Regeneration of Retinal Ganglion Cells following Axotomy: Effects of Osteopontin and mTOR Signaling , 2015, Neuron.

[278]  M. Slaughter,et al.  Two transcription factors, Pou4f2 and Isl1, are sufficient to specify the retinal ganglion cell fate , 2015, Proceedings of the National Academy of Sciences.

[279]  B. Scheven,et al.  Mesenchymal stem cell therapy for retinal ganglion cell neuroprotection and axon regeneration , 2015, Neural regeneration research.

[280]  Hao F. Zhang,et al.  Progressive degeneration of retinal and superior collicular functions in mice with sustained ocular hypertension. , 2015, Investigative ophthalmology & visual science.

[281]  N. Miller,et al.  Ischemic optic neuropathies and their models: disease comparisons, model strengths and weaknesses , 2015, Japanese Journal of Ophthalmology.

[282]  A. Huberman,et al.  Characteristic Patterns of Dendritic Remodeling in Early-Stage Glaucoma: Evidence from Genetically Identified Retinal Ganglion Cell Types , 2015, The Journal of Neuroscience.

[283]  Paloma Sobrado-Calvo,et al.  Displaced retinal ganglion cells in albino and pigmented rats , 2014, Front. Neuroanat..

[284]  L. Erskine,et al.  Connecting the Retina to the Brain , 2014, ASN neuro.

[285]  M. Romero-Ortega,et al.  Peripheral Nerve Reconstruction after Injury: A Review of Clinical and Experimental Therapies , 2014, BioMed research international.

[286]  E. Frankó,et al.  Neuroimaging of amblyopia and binocular vision: a review , 2014, Front. Integr. Neurosci..

[287]  J. Salazar,et al.  Microglia in mouse retina contralateral to experimental glaucoma exhibit multiple signs of activation in all retinal layers , 2014, Journal of Neuroinflammation.

[288]  J. Villard,et al.  Potential and Limitation of HLA-Based Banking of Human Pluripotent Stem Cells for Cell Therapy , 2014, Journal of immunology research.

[289]  Werner Held,et al.  Adaptations of Natural Killer Cells to Self-MHC Class I , 2014, Front. Immunol..

[290]  A. Hewitt,et al.  Methods of Retinal Ganglion Cell Differentiation From Pluripotent Stem Cells. , 2014, Translational vision science & technology.

[291]  Anna B. Graca,et al.  Photoreceptor replacement therapy: Challenges presented by the diseased recipient retinal environment , 2014, Visual Neuroscience.

[292]  Elias T. Zambidis,et al.  Generation of three dimensional retinal tissue with functional photoreceptors from human iPSCs , 2014, Nature Communications.

[293]  Karan H. Patel,et al.  Regulating Set-β's Subcellular Localization Toggles Its Function between Inhibiting and Promoting Axon Growth and Regeneration , 2014, The Journal of Neuroscience.

[294]  Michael Fisher,et al.  Gender as a disease modifier in neurofibromatosis type 1 optic pathway glioma , 2014, Annals of neurology.

[295]  D. Chen,et al.  Mobilizing endogenous stem cells for retinal repair. , 2014, Translational research : the journal of laboratory and clinical medicine.

[296]  N. Brecha,et al.  Melanopsin Ganglion Cells Are the Most Resistant Retinal Ganglion Cell Type to Axonal Injury in the Rat Retina , 2014, PloS one.

[297]  B. Chauhan,et al.  Contribution of retinal ganglion cells to the mouse electroretinogram , 2014, Documenta Ophthalmologica.

[298]  A. Kolodkin,et al.  Cas Adaptor Proteins Organize the Retinal Ganglion Cell Layer Downstream of Integrin Signaling , 2014, Neuron.

[299]  Adam Bleckert,et al.  Visual Space Is Represented by Nonmatching Topographies of Distinct Mouse Retinal Ganglion Cell Types , 2014, Current Biology.

[300]  D. Gutmann,et al.  Sex Is a major determinant of neuronal dysfunction in neurofibromatosis type 1 , 2014, Annals of neurology.

[301]  P. Raymond,et al.  Müller glia: Stem cells for generation and regeneration of retinal neurons in teleost fish , 2014, Progress in Retinal and Eye Research.

[302]  Stephen J. Smith,et al.  Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways , 2013, Nature.

[303]  G. Lynch,et al.  Chemically Induced Specification of Retinal Ganglion Cells From Human Embryonic and Induced Pluripotent Stem Cells , 2013, Stem cells translational medicine.

[304]  R. Wong,et al.  Differential Progression of Structural and Functional Alterations in Distinct Retinal Ganglion Cell Types in a Mouse Model of Glaucoma , 2013, The Journal of Neuroscience.

[305]  A. Weber,et al.  BDNF treatment and extended recovery from optic nerve trauma in the cat. , 2013, Investigative ophthalmology & visual science.

[306]  K. Kador,et al.  Tissue engineering the retinal ganglion cell nerve fiber layer. , 2013, Biomaterials.

[307]  U. Namgung,et al.  Role of Glial Cells in Axonal Regeneration , 2013, Experimental neurobiology.

[308]  M. Pu,et al.  Melanopsin-expressing retinal ganglion cell loss and behavioral analysis in the Thy1-CFP-DBA/2J mouse model of glaucoma , 2013, Science China Life Sciences.

[309]  M. Ueffing,et al.  Phenotypic map of porcine retinal ganglion cells , 2013, Molecular vision.

[310]  P. McDonnell,et al.  Nanoparticle diffusion in, and microrheology of, the bovine vitreous ex vivo. , 2013, Journal of controlled release : official journal of the Controlled Release Society.

[311]  Jason S. Meyer,et al.  Nonxenogeneic Growth and Retinal Differentiation of Human Induced Pluripotent Stem Cells , 2013, Stem cells translational medicine.

[312]  Suqi Zou,et al.  Neurogenesis of Retinal Ganglion Cells Is Not Essential to Visual Functional Recovery after Optic Nerve Injury in Adult Zebrafish , 2013, PloS one.

[313]  Zhiyu Jiang,et al.  DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury , 2013, Proceedings of the National Academy of Sciences.

[314]  D. Zack,et al.  Functional genomic screening identifies dual leucine zipper kinase as a key mediator of retinal ganglion cell death , 2013, Proceedings of the National Academy of Sciences.

[315]  R. Douglas,et al.  Non-Image-Forming Light Driven Functions Are Preserved in a Mouse Model of Autosomal Dominant Optic Atrophy , 2013, PloS one.

[316]  Jianhua Cang,et al.  Sustained ocular hypertension induces dendritic degeneration of mouse retinal ganglion cells that depends on cell type and location. , 2013, Investigative ophthalmology & visual science.

[317]  S. Graham,et al.  Anterograde Degeneration along the Visual Pathway after Optic Nerve Injury , 2012, PloS one.

[318]  C. Grimm,et al.  Intrinsically photosensitive retinal ganglion cells are resistant to N-methyl-D-aspartic acid excitotoxicity , 2012, Molecular vision.

[319]  J. Forrester,et al.  Good news–bad news: the Yin and Yang of immune privilege in the eye , 2012, Front. Immun..

[320]  D. Barker,et al.  Ghost Loci Imply Hox and ParaHox Existence in the Last Common Ancestor of Animals , 2012, Current Biology.

[321]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[322]  B. Lin,et al.  Development and Degeneration of Cone Bipolar Cells Are Independent of Cone Photoreceptors in a Mouse Model of Retinitis Pigmentosa , 2012, PloS one.

[323]  E. Geisert,et al.  A practical approach to optic nerve crush in the mouse , 2012, Molecular vision.

[324]  T. Jessell,et al.  Optic Chiasm Presentation of Semaphorin6D in the Context of Plexin-A1 and Nr-CAM Promotes Retinal Axon Midline Crossing , 2012, Neuron.

[325]  M. Fagiolini,et al.  Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors , 2012, Proceedings of the National Academy of Sciences.

[326]  D. Edward,et al.  Animal Models of Glaucoma , 2012, Journal of biomedicine & biotechnology.

[327]  J. Salazar,et al.  IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma , 2012, Journal of Neuroinflammation.

[328]  Vittorio Porciatti,et al.  Radiation treatment inhibits monocyte entry into the optic nerve head and prevents neuronal damage in a mouse model of glaucoma. , 2012, The Journal of clinical investigation.

[329]  Ruikang K. Wang,et al.  Transplantation of Human Embryonic Stem Cell-Derived Retinal Cells into the Subretinal Space of a Non-Human Primate , 2012, Translational vision science & technology.

[330]  S. Sharma,et al.  Morphology of retinal vessels in the optic disk in a Göttingen minipig experimental glaucoma model. , 2012, Veterinary ophthalmology.

[331]  G. Chapman,et al.  The Effects of Rearing Light Level and Duration Differences on the Optic Nerve, Brain, and Associated Structures in Developing Zebrafish Larvae: A Light and Transmission Electron Microscope Study , 2012, Anatomical record.

[332]  S. Neuhauss,et al.  The visual system of zebrafish and its use to model human ocular Diseases , 2012, Developmental neurobiology.

[333]  G. A. Limb,et al.  Human Müller Glia with Stem Cell Characteristics Differentiate into Retinal Ganglion Cell (rgc) Precursors in Vitro and Partially Restore Rgc Function in Vivo following Transplantation G. Astrid Limb a Key Words. Tissue-specific Stem Cells @bullet Differentiation @bullet Cell Transplantation @bullet , 2022 .

[334]  J. Shimizu,et al.  Establishment of retinal progenitor cell clones by transfection with Pax6 gene of mouse induced pluripotent stem (iPS) cells , 2012, Neuroscience Letters.

[335]  T. Borrás Gene therapy strategies in glaucoma and application for steroid-induced hypertension. , 2011, Saudi journal of ophthalmology : official journal of the Saudi Ophthalmological Society.

[336]  P. Miller,et al.  Feline glaucoma--a comprehensive review. , 2011, Veterinary ophthalmology.

[337]  P. Wiedemann,et al.  Müller Glial Cells in Retinal Disease , 2011, Ophthalmologica.

[338]  David M Gamm,et al.  Optic Vesicle‐like Structures Derived from Human Pluripotent Stem Cells Facilitate a Customized Approach to Retinal Disease Treatment , 2011, Stem cells.

[339]  A. Di Polo,et al.  Ocular neuroprotection by siRNA targeting caspase-2 , 2011, Cell Death and Disease.

[340]  N. Miller,et al.  Nonarteritic anterior ischemic optic neuropathy (NAION) and its experimental models , 2011, Progress in Retinal and Eye Research.

[341]  W. Harris,et al.  The Oriented Emergence of Axons from Retinal Ganglion Cells Is Directed by Laminin Contact In Vivo , 2011, Neuron.

[342]  D. Golombek,et al.  Effect of experimental glaucoma on the non‐image forming visual system , 2011, Journal of neurochemistry.

[343]  W. Hauswirth,et al.  XIAP therapy increases survival of transplanted rod precursors in a degenerating host retina. , 2011, Investigative ophthalmology & visual science.

[344]  Robert N Weinreb,et al.  Long-term in vivo imaging and measurement of dendritic shrinkage of retinal ganglion cells. , 2011, Investigative ophthalmology & visual science.

[345]  P. Chinnery,et al.  Mitochondrial optic neuropathies – Disease mechanisms and therapeutic strategies , 2011, Progress in Retinal and Eye Research.

[346]  David R. Williams,et al.  Optical properties of the mouse eye , 2011, Biomedical optics express.

[347]  Norbert Pfeiffer,et al.  Ophthalmopathology in rats with MBP-induced experimental autoimmune encephalomyelitis , 2011, Graefe's Archive for Clinical and Experimental Ophthalmology.

[348]  Richard S. Smith,et al.  Mutations in Zebrafish lrp2 Result in Adult-Onset Ocular Pathogenesis That Models Myopia and Other Risk Factors for Glaucoma , 2011, PLoS genetics.

[349]  Justis P. Ehlers,et al.  Evaluation of contrast agents for enhanced visualization in optical coherence tomography. , 2010, Investigative ophthalmology & visual science.

[350]  Tudor C. Badea,et al.  Transmembrane semaphorin signaling controls laminar stratification in the mammalian retina , 2010, Nature.

[351]  H. Hara,et al.  REVIEW: An Approach for Neuroprotective Therapies of Secondary Brain Damage after Excitotoxic Retinal Injury in Mice , 2010, CNS neuroscience & therapeutics.

[352]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[353]  A. Araque,et al.  Glial cells in neuronal network function , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[354]  Diane Hoffman-Kim,et al.  Topography, cell response, and nerve regeneration. , 2010, Annual review of biomedical engineering.

[355]  D. Gutmann,et al.  Defective cAMP Generation Underlies the Sensitivity of CNS Neurons to Neurofibromatosis-1 Heterozygosity , 2010, The Journal of Neuroscience.

[356]  W. Thoreson,et al.  Induced Pluripotent Stem Cells Generate Both Retinal Ganglion Cells and Photoreceptors: Therapeutic Implications in Degenerative Changes in Glaucoma and Age‐Related Macular Degeneration , 2010, Stem cells.

[357]  T. Reh,et al.  Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. , 2010, Trends in molecular medicine.

[358]  Thomas V. Johnson,et al.  Rodent models of glaucoma , 2010, Brain Research Bulletin.

[359]  K. Martin,et al.  Identification of barriers to retinal engraftment of transplanted stem cells. , 2010, Investigative ophthalmology & visual science.

[360]  James Y. Jiang,et al.  Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging , 2010, Physics in medicine and biology.

[361]  D. Zack,et al.  Oncomodulin links inflammation to optic nerve regeneration , 2009, Proceedings of the National Academy of Sciences.

[362]  Kwoon Y. Wong,et al.  Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: Contacts with dopaminergic amacrine cells and melanopsin ganglion cells , 2009, The Journal of comparative neurology.

[363]  N. Osborne,et al.  Cellular signaling and factors involved in Müller cell gliosis: Neuroprotective and detrimental effects , 2009, Progress in Retinal and Eye Research.

[364]  M. Kayama,et al.  Transfection with pax6 Gene of Mouse Embryonic Stem Cells and Subsequent Cell Cloning Induced Retinal Neuron Progenitors, Including Retinal Ganglion Cell-Like Cells, in vitro , 2009, Ophthalmic Research.

[365]  K. Kaestner,et al.  KLF Family Members Regulate Intrinsic Axon Regeneration Ability , 2009, Science.

[366]  J. Forrester,et al.  Para-inflammation in the aging retina , 2009, Progress in Retinal and Eye Research.

[367]  Y. Sasai,et al.  In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction , 2009, Journal of Cell Science.

[368]  T. Yamashima,et al.  Morphological changes in the visual pathway induced by experimental glaucoma in Japanese monkeys. , 2009, Experimental eye research.

[369]  S. Yamanaka,et al.  Generation of retinal cells from mouse and human induced pluripotent stem cells , 2009, Neuroscience Letters.

[370]  M. N. Vergara,et al.  Retinal regeneration in the Xenopus laevis tadpole: a new model system , 2009, Molecular vision.

[371]  C. L. Schlamp,et al.  Mouse models of retinal ganglion cell death and glaucoma. , 2009, Experimental eye research.

[372]  H. Hara,et al.  Involvement of brain-derived neurotrophic factor in time-dependent neurodegeneration in the murine superior colliculus after intravitreal injection of N-methyl-D-aspartate , 2009, Molecular vision.

[373]  D. Badcock,et al.  Spatial summation properties for magnocellular and parvocellular pathways in glaucoma. , 2009, Investigative ophthalmology & visual science.

[374]  Hao Sun,et al.  Assessment of contrast gain signature in inferred magnocellular and parvocellular pathways in patients with glaucoma , 2008, Vision Research.

[375]  G. A. Limb,et al.  Human Müller stem cell (MIO-M1) transplantation in a rat model of glaucoma: survival, differentiation, and integration. , 2008, Investigative ophthalmology & visual science.

[376]  M. Pu,et al.  Enhanced Survival of Melanopsin-expressing Retinal Ganglion Cells After Injury is Associated with the PI3 K/Akt Pathway , 2008, Cellular and Molecular Neurobiology.

[377]  E. L. West,et al.  Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors , 2008, Experimental eye research.

[378]  G. A. Limb,et al.  Chondroitin Sulfate Proteoglycans and Microglia Prevent Migration and Integration of Grafted Müller Stem Cells into Degenerating Retina , 2008, Stem cells.

[379]  G. Richard,et al.  Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. , 2008, Experimental eye research.

[380]  David J. Calkins,et al.  Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. , 2008, Investigative ophthalmology & visual science.

[381]  J. Sanes,et al.  Molecular identification of a retinal cell type that responds to upward motion , 2008, Nature.

[382]  Z. Bao Intraretinal projection of retinal ganglion cell axons as a model system for studying axon navigation , 2008, Brain Research.

[383]  A. Hara,et al.  Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells , 2008, Graefe's Archive for Clinical and Experimental Ophthalmology.

[384]  D. Goldman,et al.  The Proneural Basic Helix-Loop-Helix Gene Ascl1a Is Required for Retina Regeneration , 2008, The Journal of Neuroscience.

[385]  Lynda Erskine,et al.  The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. , 2007, Developmental biology.

[386]  L. Gan,et al.  Expression of the LIM‐homeodomain protein Isl1 in the developing and mature mouse retina , 2007, The Journal of comparative neurology.

[387]  Linda K. Barthel,et al.  Late-Stage Neuronal Progenitors in the Retina Are Radial Müller Glia That Function as Retinal Stem Cells , 2007, The Journal of Neuroscience.

[388]  L. Levin,et al.  Histone deacetylase inhibition-mediated differentiation of RGC-5 cells and interaction with survival. , 2007, Investigative ophthalmology & visual science.

[389]  A. Swaroop,et al.  Chondroitinase ABC Treatment Enhances Synaptogenesis between Transplant and Host Neurons in Model of Retinal Degeneration , 2007, Cell transplantation.

[390]  D. Badcock,et al.  Contrast sensitivity changes due to glaucoma and normal aging: low-spatial-frequency losses in both magnocellular and parvocellular pathways. , 2007, Investigative ophthalmology & visual science.

[391]  J. Bradley,et al.  Pathways of Helper CD4 T Cell Allorecognition in Generating Alloantibody and CD8 T Cell Alloimmunity , 2007, Transplantation.

[392]  Benjamin G. Lilienfeld,et al.  Transgenic expression of HLA‐E single chain trimer protects porcine endothelial cells against human natural killer cell‐mediated cytotoxicity , 2007, Xenotransplantation.

[393]  Takayuki Harada,et al.  Molecular regulation of visual system development: more than meets the eye. , 2007, Genes & development.

[394]  Christopher Bowd,et al.  Retinotopic organization of primary visual cortex in glaucoma: Comparing fMRI measurements of cortical function with visual field loss , 2007, Progress in Retinal and Eye Research.

[395]  T. Suarez,et al.  Expression of endothelial leukocyte adhesion molecule 1 in the aqueous outflow pathway of porcine eyes with induced glaucoma. , 2006, Molecular Vision.

[396]  Elena Vecino,et al.  Three experimental glaucoma models in rats: comparison of the effects of intraocular pressure elevation on retinal ganglion cell size and death. , 2006, Experimental eye research.

[397]  M. Pu,et al.  Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. , 2006, Investigative ophthalmology & visual science.

[398]  L. Benowitz,et al.  Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells , 2006, Nature Neuroscience.

[399]  Elena Vecino,et al.  The pig eye as a novel model of glaucoma. , 2005, Experimental eye research.

[400]  R. Masland,et al.  Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice , 2005, The Journal of cell biology.

[401]  Elena Vecino,et al.  Topography of pig retinal ganglion cells , 2005, The Journal of comparative neurology.

[402]  M. Young,et al.  Transplantation of Neural Progenitor Cells into the Developing Retina of the Brazilian Opossum: An in vivo System for Studying Stem/Progenitor Cell Plasticity , 2005, Developmental Neuroscience.

[403]  Changhuei Yang,et al.  Molecular Contrast Optical Coherence Tomography: A Review ¶ , 2005 .

[404]  Richard S. Smith,et al.  Intraocular pressure in zebrafish: comparison of inbred strains and identification of a reduced melanin mutant with raised IOP. , 2004, Investigative ophthalmology & visual science.

[405]  G. A. Robinson,et al.  Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft , 2004, Vision Research.

[406]  D. Badcock,et al.  Psychophysical measurement of neural adaptation abnormalities in magnocellular and parvocellular pathways in glaucoma. , 2004, Investigative ophthalmology & visual science.

[407]  J. Ruiz-Ederra,et al.  Comparative study of the three neurofilament subunits within pig and human retinal ganglion cells. , 2004, Molecular vision.

[408]  S. Graham,et al.  Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry. , 2003, Archives of ophthalmology.

[409]  D. Chen,et al.  Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin , 2003, Nature Neuroscience.

[410]  P. Kaufman,et al.  Effects of retinal ganglion cell loss on magno-, parvo-, koniocellular pathways in the lateral geniculate nucleus and visual cortex in glaucoma , 2003, Progress in Retinal and Eye Research.

[411]  Tiande Shou,et al.  Differential dendritic shrinkage of α and β retinal ganglion cells in cats with chronic glaucoma , 2003 .

[412]  D. Hicks,et al.  Effects of müller glia on cell survival and neuritogenesis in adult porcine retina in vitro. , 2002, Investigative ophthalmology & visual science.

[413]  Y. Fukuda,et al.  Survival and axonal regeneration of retinal ganglion cells in adult cats , 2002, Progress in Retinal and Eye Research.

[414]  Ben A. Barres,et al.  Retinal Ganglion Cells Do Not Extend Axons by Default Promotion by Neurotrophic Signaling and Electrical Activity , 2002, Neuron.

[415]  S. Strittmatter,et al.  Small Proline-Rich Repeat Protein 1A Is Expressed by Axotomized Neurons and Promotes Axonal Outgrowth , 2002, The Journal of Neuroscience.

[416]  S. Sharma,et al.  Effects of increased intraocular pressure on rat retinal ganglion cells , 2001, International Journal of Developmental Neuroscience.

[417]  Xian-Jie Yang,et al.  Regulation of retinal ganglion cell production by Sonic hedgehog. , 2001, Development.

[418]  Dao-Yi Yu,et al.  Oxygen Distribution and Consumption within the Retina in Vascularised and Avascular Retinas and in Animal Models of Retinal Disease , 2001, Progress in Retinal and Eye Research.

[419]  S. Korsmeyer,et al.  The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. , 2000, Molecular cell.

[420]  R. Campenot,et al.  The synthesis and transport of lipids for axonal growth and nerve regeneration. , 2000, Biochimica et biophysica acta.

[421]  R S Harwerth,et al.  Glaucoma in primates: cytochrome oxidase reactivity in parvo- and magnocellular pathways. , 2000, Investigative ophthalmology & visual science.

[422]  P A Sample,et al.  Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. , 2000, Investigative ophthalmology & visual science.

[423]  P. Kaufman,et al.  Experimental glaucoma and cell size, density, and number in the primate lateral geniculate nucleus. , 2000, Investigative ophthalmology & visual science.

[424]  P. Kaufman,et al.  Loss of neurons in magnocellular and parvocellular layers of the lateral geniculate nucleus in glaucoma. , 2000, Archives of ophthalmology.

[425]  H. Quigley,et al.  Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. , 2000, Investigative ophthalmology & visual science.

[426]  Hideya Uchida,et al.  Retinal ganglion cell death in experimental glaucoma , 2000, The British journal of ophthalmology.

[427]  M. Kreutz,et al.  Susceptibility of retinal ganglion cells to excitotoxicity depends on soma size and retinal eccentricity. , 1999, Current eye research.

[428]  W. Klein,et al.  POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. , 1999, Developmental biology.

[429]  S L Graham,et al.  Early magnocellular loss in glaucoma demonstrated using the pseudorandomly stimulated flash visual evoked potential. , 1999, Journal of glaucoma.

[430]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[431]  P. Kaufman,et al.  Morphology of single ganglion cells in the glaucomatous primate retina. , 1998, Investigative ophthalmology & visual science.

[432]  S. Sharma,et al.  The patterns of retinal ganglion cell death in hypertensive eyes , 1998, Brain Research.

[433]  S. K. Malhotra,et al.  Reactive astrocytes: cellular and molecular cues to biological function , 1997, Trends in Neurosciences.

[434]  R. Weinreb,et al.  Short-wavelength automated perimetry and motion automated perimetry in patients with glaucoma. , 1997, Archives of ophthalmology.

[435]  J. Morrison,et al.  Magnocellular and parvocellular visual pathways are both affected in a macaque monkey model of glaucoma. , 1997, Australian and New Zealand journal of ophthalmology.

[436]  R. Anderson,et al.  Psychophysical Evidence for a Selective Loss of M Ganglion Cells in Glaucoma , 1997, Vision Research.

[437]  Richard D Fetter,et al.  Genetic Dissection of Structural and Functional Components of Synaptic Plasticity. I. Fasciclin II Controls Synaptic Stabilization and Growth , 1996, Neuron.

[438]  D. Wilson,et al.  An endothelin-1 induced model of optic nerve ischemia in the rabbit. , 1996, Investigative ophthalmology & visual science.

[439]  B. Ransom,et al.  Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve , 1996, Trends in Neurosciences.

[440]  S. Sharma,et al.  Chronic ocular hypertension following episcleral venous occlusion in rats. , 1995, Experimental eye research.

[441]  Y. Fukuda,et al.  Number and dendritic morphology of retinal ganglion cells that survived after axotomy in adult cats. , 1995, Journal of neurobiology.

[442]  J. Morrison,et al.  Differential vulnerability of neurochemically identified subpopulations of retinal neurons in a monkey model of glaucoma , 1995, Brain Research.

[443]  F. Mikelberg,et al.  Optic nerve axon count and axon diameter in patients with ocular hypertension and normal visual fields. , 1995, Ophthalmology.

[444]  W. Wang,et al.  Receptive field properties of cat retinal ganglion cells during short-term IOP elevation. , 1994, Investigative ophthalmology & visual science.

[445]  E. Hedley‐Whyte,et al.  Lateral geniculate nucleus in glaucoma. , 1993, American journal of ophthalmology.

[446]  C. Johnson,et al.  Longitudinal comparison of temporal-modulation perimetry with white-on-white and blue-on-yellow perimetry in ocular hypertension and early glaucoma. , 1993, Journal of the Optical Society of America. A, Optics, image science, and vision.

[447]  Earl L. Smith,et al.  Colour vision anomalies following experimental glaucoma in monkeys , 1993, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[448]  A. Aguayo,et al.  Regenerated synapses persist in the superior colliculus after the regrowth of retinal ganglion cell axons , 1991, Journal of neurocytology.

[449]  S. Carbonetto,et al.  Degenerative and regenerative responses of injured neurons in the central nervous system of adult mammals. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[450]  H A Quigley,et al.  Retinal ganglion cell loss is size dependent in experimental glaucoma. , 1991, Investigative ophthalmology & visual science.

[451]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[452]  Y. Zhou,et al.  Y cells in the cat retina are more tolerant than X cells to brief elevation of IOP. , 1989, Investigative ophthalmology & visual science.

[453]  G. Dunkelberger,et al.  Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. , 1989, American journal of ophthalmology.

[454]  W R Green,et al.  Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. , 1988, Ophthalmology.

[455]  S. Thanos,et al.  Axonal regeneration and synapse formation in the superior colliculus by retinal ganglion cells in the adult rat , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[456]  G. Dunkelberger,et al.  Chronic glaucoma selectively damages large optic nerve fibers. , 1987, Investigative ophthalmology & visual science.

[457]  K. So,et al.  Lengthy regrowth of cut axons from ganglion cells after peripheral nerve transplantation into the retina of adult rats , 1985, Brain Research.

[458]  W. Green,et al.  The histology of human glaucoma cupping and optic nerve damage: clinicopathologic correlation in 21 eyes. , 1979, Ophthalmology.

[459]  Xueding Wang,et al.  In vivo cell tracking using multimodality imaging , 2022, Biomedical optics.

[460]  Ennifer,et al.  Adaptive optics two-photon excited fluorescence lifetime imaging ophthalmoscopy of photoreceptors and retinal pigment epithelium in the living non-human primate eye , 2021 .

[461]  T. Badea,et al.  Brn3a and Brn3b knockout mice display unvaried retinal fine structure despite major morphological and numerical alterations of ganglion cells , 2019, The Journal of comparative neurology.

[462]  D. Gutmann,et al.  Optic Pathway Gliomas in Neurofibromatosis Type 1 , 2018, Journal of child neurology.

[463]  P. Allen,et al.  Post-Vitrectomy Endophthalmitis in Victoria, Australia. , 2017, Asia-Pacific journal of ophthalmology.

[464]  A. Webster,et al.  The zebrafish eye—a paradigm for investigating human ocular genetics , 2017, Eye.

[465]  M. Vidal-Sanz,et al.  Apoptotic Retinal Ganglion Cell Death After Optic Nerve Transection or Crush in Mice: Delayed RGC Loss With BDNF or a Caspase 3 Inhibitor. , 2016, Investigative ophthalmology & visual science.

[466]  P. Bergmann Quantitative Trait Loci Qtl Methods And Protocols , 2016 .

[467]  Mesenchymal stem cell therapy for retinal ganglion cell neuroprotection and axon regeneration , 2015 .

[468]  B. Jones,et al.  Generation of an inbred miniature pig model of retinitis pigmentosa. , 2012, Investigative ophthalmology & visual science.

[469]  Sheldon Middleton,et al.  Porcine ophthalmology. , 2010, The Veterinary clinics of North America. Food animal practice.

[470]  M. Feller,et al.  Mechanisms underlying spontaneous patterned activity in developing neural circuits , 2010, Nature Reviews Neuroscience.

[471]  Edward Koenig,et al.  Cell biology of the axon , 2009 .

[472]  F. Vrabec “Displaced nerve cells” in the human retina , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[473]  J. W. Howe,et al.  Electrophysiologically determined contrast sensitivity in patients with ocular hypertension and chronic glaucoma , 2004, Documenta Ophthalmologica.

[474]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[475]  M. Young,et al.  Incorporation of murine brain progenitor cells into the developing mammalian retina. , 2003, Investigative ophthalmology & visual science.

[476]  B. Sabel,et al.  Restoration of vision I: neurobiological mechanisms of restoration and plasticity after brain damage - a review. , 1999, Restorative neurology and neuroscience.

[477]  J. Provis,et al.  Microglia in human retina: a heterogeneous population with distinct ontogenies. , 1996, Perspectives on developmental neurobiology.

[478]  H. Kolb,et al.  Melanopsin-expressing, Intrinsically Photosensitive Retinal Ganglion Cells (ipRGCs) -- Webvision: The Organization of the Retina and Visual System , 1995 .

[479]  Earl L. Smith,et al.  Retinal inputs to the monkey's lateral geniculate nucleus in experimental glaucoma , 1993 .

[480]  H A Quigley,et al.  Foveal ganglion cell loss is size dependent in experimental glaucoma. , 1993, Investigative ophthalmology & visual science.

[481]  H. Onoe,et al.  Direct Comparison of Autologous and Allogeneic Transplantation of iPSC-Derived Neural Cells in the Brain of a Nonhuman Primate , 2013, Stem cell reports.

[482]  JoVE Video Dataset , 2022 .