Sliding-induced adhesion of stiff polymer microfibre arrays. II. Microscale behaviour

The adhesive pads of geckos provide control of normal adhesive force by controlling the applied shear force. This frictional adhesion effect is one of the key principles used for rapid detachment in animals running up vertical surfaces. We developed polypropylene microfibre arrays composed of vertical, 0.3 μm radius fibres with elastic modulus of 1 GPa which show this effect for the first time using a stiff polymer. In the absence of shear forces, these fibres show minimal normal adhesion. However, sliding parallel to the substrate with a spherical probe produces a frictional adhesion effect which is not seen in the flat control. A cantilever model for the fibres and the spherical probe indicates a strong dependence on the initial fibre angle. A novel feature of the microfibre arrays is that adhesion improves with use. Repeated shearing of fibres temporarily increases maximum shear and pull-off forces.

[1]  K. Johnson,et al.  Adhesion and friction between a smooth elastic spherical asperity and a plane surface , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[2]  C Majidi,et al.  Effective elastic modulus of isolated gecko setal arrays , 2006, Journal of Experimental Biology.

[3]  K. Kendall Thin-film peeling-the elastic term , 1975 .

[4]  Matt Wilkinson,et al.  Frictional and elastic energy in gecko adhesive detachment , 2007, Journal of The Royal Society Interface.

[5]  Ronald S. Fearing,et al.  Towards friction and adhesion from high modulus microfiber arrays , 2007 .

[6]  Metin Sitti,et al.  Adhesion of biologically inspired vertical and angled polymer microfiber arrays. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  Mark R. Cutkosky,et al.  Directional Adhesive Structures for Controlled Climbing on Smooth Vertical Surfaces , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[8]  M. Cutkosky,et al.  Frictional adhesion: a new angle on gecko attachment , 2006, Journal of Experimental Biology.

[9]  R. Full,et al.  Adhesive force of a single gecko foot-hair , 2000, Nature.

[10]  M. Meyyappan,et al.  Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive , 2006 .

[11]  S. Gorb,et al.  Shearing of fibrillar adhesive microstructure: friction and shear-related changes in pull-off force , 2007, Journal of The Royal Society Interface.

[12]  C. Majidi Remarks on formulating an adhesion problem using Euler¿s elastica (draft) , 2007 .

[13]  R S Fearing,et al.  High friction from a stiff polymer using microfiber arrays. , 2006, Physical review letters.

[14]  Yu Tian,et al.  Adhesion and friction in gecko toe attachment and detachment , 2006, Proceedings of the National Academy of Sciences.

[15]  Pulickel M. Ajayan,et al.  Carbon nanotube-based synthetic gecko tapes , 2007, Proceedings of the National Academy of Sciences.

[16]  R. Full,et al.  Ancestrally high elastic modulus of gecko setal beta-keratin. , 2007, Journal of the Royal Society, Interface.

[17]  Ronald S. Fearing,et al.  Synthetic gecko foot-hair micro/nano-structures as dry adhesives , 2003 .

[18]  R. Fearing,et al.  Sliding-induced adhesion of stiff polymer microfibre arrays. I. Macroscale behaviour , 2008, Journal of The Royal Society Interface.

[19]  Metin Sitti,et al.  Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives , 2006 .

[20]  A. Geim,et al.  Microfabricated adhesive mimicking gecko foot-hair , 2003, Nature materials.

[21]  Takashi Ariyama Viscoelastic-plastic behaviour with mean strain changes in polypropylene , 1996, Journal of Materials Science.

[22]  Ralph Spolenak,et al.  Adhesion design maps for bio-inspired attachment systems. , 2005, Acta biomaterialia.

[23]  R. Full,et al.  Dynamics of geckos running vertically , 2006, Journal of Experimental Biology.

[24]  G. Somorjai,et al.  Continuum Force Microscopy Study of the Elastic Modulus, Hardness and Friction of Polyethylene and Polypropylene Surfaces , 1998 .

[25]  S. Gorb,et al.  Biomimetic mushroom-shaped fibrillar adhesive microstructure , 2007, Journal of The Royal Society Interface.

[26]  Huajian Gao,et al.  Mechanics of hierarchical adhesion structures of geckos , 2005 .

[27]  Pavel Neuzil,et al.  Self‐Assembled Nanoparticles Based Fabrication of Gecko Foot‐Hair‐Inspired Polymer Nanofibers , 2007 .

[28]  Friction of partially embedded vertically aligned carbon nanofibers inside elastomers , 2007 .

[29]  D. Tabor,et al.  Friction and molecular structure: the behaviour of some thermoplastics , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  A. Antoniou,et al.  Deformation characteristics of tin-based solder joints , 2003 .

[31]  Kellar Autumn,et al.  Gecko Adhesion: Structure, Function, and Applications , 2007 .

[32]  R. Ruibal,et al.  The structure of the digital setae of lizards , 1965, Journal of morphology.

[33]  Kellar Autumn,et al.  Gecko adhesion: evolutionary nanotechnology , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  K. Kendall,et al.  Surface energy and the contact of elastic solids , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[35]  Ronald S. Fearing,et al.  Attachment of fiber array adhesive through side contact , 2005 .

[36]  Metin Sitti,et al.  Adhesion and anisotropic friction enhancements of angled heterogeneous micro-fiber arrays with spherical and spatula tips , 2007 .

[37]  Kellar Autumn,et al.  Ultrahydrophobicity indicates a non-adhesive default state in gecko setae , 2006, Journal of Comparative Physiology A.