Theoretical study of charge transfer in graphite intercalation compounds

[1]  A. Charlier,et al.  Graphite intercalation compounds : exchange parameters and self-consistent analytical potentials , 1991 .

[2]  Nozières,et al.  Charge transfer and the nature of empty states in potassium-intercalated graphite. , 1990, Physical review. B, Condensed matter.

[3]  Rabii,et al.  Polarization of carbon electron-momentum density in lithium-graphite intercalation compounds. , 1989, Physical review. B, Condensed matter.

[4]  Eklund,et al.  Charge-transfer effects in graphite intercalates: Ab initio calculations and neutron-diffraction experiment. , 1987, Physical review letters.

[5]  Chen,et al.  Magnetoresistivity and Monte Carlo studies of magnetic phase transitions in C6Eu. , 1986, Physical review. B, Condensed matter.

[6]  M. T. Johnson,et al.  Electronic structure of ordered Cs and K overlayers on graphite: Direct observation of complete charge transfer , 1986 .

[7]  D. Guérard,et al.  Measurement of the electron momentum density in LiC6: X-ray compton scattering using synchrotron radiation , 1985 .

[8]  D. Guérard,et al.  Electronic density of first stage lithium intercalated graphite , 1985 .

[9]  D. Guérard,et al.  Lithium intercalated graphite : experimental Compton profile for stage one , 1984 .

[10]  J. Fischer,et al.  X-Ray Photoelectron Study of the Valence Band of KC_{8}: Direct Experimental Proof of Complete K (4s) Charge Transfer , 1984 .

[11]  J. Feldhaus,et al.  Electronic and Magnetic Properties of Europium-Intercalated Graphite , 1983 .

[12]  T. Sakakibara,et al.  High field magnetization of europium-graphite intercalation compound C6Eu , 1981 .

[13]  L. Pietronero,et al.  Bond-Length Change as a Tool to Determine Charge Transfer and Electron-Phonon Coupling in Graphite Intercalation Compounds , 1981 .

[14]  K. Ohmatsu,et al.  Magnetic properties of europium-graphite intercalation compound C6Eu , 1981 .

[15]  I. P. Batra,et al.  A theoretical study of the electronic properties of intercalated graphite , 1980 .

[16]  E. W. Plummer,et al.  Charge-Transfer and Non-Rigid-Band Effects in the Graphite Compound LiC 6 , 1980 .

[17]  N. Holzwarth,et al.  Theoretical study of lithium graphite. I. Band structure, density of states, and Fermi-surface properties , 1978 .

[18]  N. Holzwarth,et al.  Charge distribution in C6Li , 1977 .

[19]  N. Holzwarth,et al.  Energy band structure of lithium—graphite intercalation compound , 1977 .

[20]  F. Salzano,et al.  Stability of Phases in the Cesium—Graphite System , 1966 .

[21]  G. Hennig Optical Transmission of Graphite Compounds , 1965 .

[22]  John Arents,et al.  Atomic Structure Calculations , 1964 .

[23]  N. Bernardes Potential energy matrix elements between non-overlapping wave functions , 1959 .

[24]  A. Ubbelohde,et al.  Metallic Conduction in the Crystal Compounds of Graphite , 1959, Nature.

[25]  N. Bernardes Theory of Solid Ne, A, Kr, and Xe at 0°K , 1958 .

[26]  H. Feilchenfeld Bond Length and Bond Energy in Hydrocarbons , 1957 .

[27]  G. Hennig,et al.  PROPERTIES OF THE INTERSTITIAL COMPOUNDS OF GRAPHITE. IV. PROPERTIES OF N- TYPE COMPOUNDS , 1957 .

[28]  F. Bertaut L'énergie électrostatique de réseaux ioniques , 1952 .

[29]  K. Ohmatsu,et al.  Specific heat of the Europium-graphite intercaltion compound C6Eu , 1983 .

[30]  R. O. Brennan The Interlayer Binding in Graphite , 1951 .