Prey preference follows phylogeny: evolutionary dietary patterns within the marine gastropod group Cladobranchia (Gastropoda: Heterobranchia: Nudibranchia)

BackgroundThe impact of predator-prey interactions on the evolution of many marine invertebrates is poorly understood. Since barriers to genetic exchange are less obvious in the marine realm than in terrestrial or freshwater systems, non-allopatric divergence may play a fundamental role in the generation of biodiversity. In this context, shifts between major prey types could constitute important factors explaining the biodiversity of marine taxa, particularly in groups with highly specialized diets. However, the scarcity of marine specialized consumers for which reliable phylogenies exist hampers attempts to test the role of trophic specialization in evolution. In this study, RNA-Seq data is used to produce a phylogeny of Cladobranchia, a group of marine invertebrates that feed on a diverse array of prey taxa but mostly specialize on cnidarians. The broad range of prey type preferences allegedly present in two major groups within Cladobranchia suggest that prey type shifts are relatively common over evolutionary timescales.ResultsIn the present study, we generated a well-supported phylogeny of the major lineages within Cladobranchia using RNA-Seq data, and used ancestral state reconstruction analyses to better understand the evolution of prey preference. These analyses answered several fundamental questions regarding the evolutionary relationships within Cladobranchia, including support for a clade of species from Arminidae as sister to Tritoniidae (which both preferentially prey on Octocorallia). Ancestral state reconstruction analyses supported a cladobranchian ancestor with a preference for Hydrozoa and show that the few transitions identified only occur from lineages that prey on Hydrozoa to those that feed on other types of prey.ConclusionsThere is strong phylogenetic correlation with prey preference within Cladobranchia, suggesting that prey type specialization within this group has inertia. Shifts between different types of prey have occurred rarely throughout the evolution of Cladobranchia, indicating that this may not have been an important driver of the diversity within this group.

[1]  J. Nybakken,et al.  A WORLDWIDE REVIEW OF THE FOOD OF NUDIBRANCH MOLLUSKS. PART II. THE SUBORDER DENDRONOTACEA , 1999 .

[2]  B. Picton,et al.  Genetic divergence and cryptic speciation in two morphs of the common subtidal nudibranch Doto coronata (Opisthobranchia: Dendronotacea: Dotoidae) from the northern Irish Sea , 1992 .

[3]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[4]  T. Gosliner,et al.  A Tale That Morphology Fails to Tell: A Molecular Phylogeny of Aeolidiidae (Aeolidida, Nudibranchia, Gastropoda) , 2013, PloS one.

[5]  T. Gosliner,et al.  A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae , 2016, PloS one.

[6]  G. Cronin,et al.  Distribution, density, and sequestration of host chemical defenses by the specialist nudibranch Tritonia hamnerorum found at high densities on the sea fan Gorgonia ventalina , 1995 .

[7]  N. Knowlton,et al.  Ecological speciation in anemone‐associated snapping shrimps (Alpheus armatus species complex) , 2013, Molecular ecology.

[8]  Derrick J. Zwickl Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion , 2006 .

[9]  Phylogeny of the Nudibranchia , 2000 .

[10]  S. Tavaré Some probabilistic and statistical problems in the analysis of DNA sequences , 1986 .

[11]  K. Jensen Evolution of the Sacoglossa (Mollusca, Opisthobranchia) and the ecological associations with their food plants , 1997, Evolutionary Ecology.

[12]  Michael P. Cummings,et al.  A Gateway for Phylogenetic Analysis Powered by Grid Computing Featuring GARLI 2.0 , 2014, Systematic biology.

[13]  P. Mikkelsen Shelled opisthobranchs. , 2002, Advances in marine biology.

[14]  Burnaia Miller, 2001 (Gastropoda, Heterobranchia, Nudibranchia): a facelinid genus with an Aeolidiidae’s outward appearance , 2015, Helgoland Marine Research.

[15]  Mark Howison,et al.  Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda , 2014, bioRxiv.

[16]  E. Hoberg,et al.  A macroevolutionary mosaic: episodic host‐switching, geographical colonization and diversification in complex host–parasite systems , 2008 .

[17]  Ángel A. Valdés,et al.  Parallel changes in genital morphology delineate cryptic diversification of planktonic nudibranchs , 2013, Proceedings of the Royal Society B: Biological Sciences.

[18]  M. Monaghan,et al.  Freshwater biodiversity and aquatic insect diversification. , 2014, Annual review of entomology.

[19]  N. Hill,et al.  Phylogenetic and Geographic Variation in Host Breadth and Composition by Herbivorous Amphipods in the Family Ampithoidae , 2007, Evolution; international journal of organic evolution.

[20]  T. Gosliner,et al.  A molecular approach to the phylogenetic status of the aeolid genus Babakina Roller, 1973 (Nudibranchia) , 2011 .

[21]  D. Fautin Structural diversity, systematics, and evolution of cnidae. , 2009, Toxicon : official journal of the International Society on Toxinology.

[22]  T. E. Thompson,et al.  Biology of Opisthobranch Molluscs , 1986 .

[23]  S. Mauch Protection of the nudibranch Aeolidia papillosa from nematocyst discharge of the sea anemone Anthopleura elegantissima , 1998 .

[24]  J. Boore,et al.  The phylogeny of Nudibranchia (Opisthobranchia, Gastropoda, Mollusca) reconstructed by three molecular markers , 2001 .

[25]  Jessica A. Goodheart,et al.  Relationships within Cladobranchia (Gastropoda: Nudibranchia) based on RNA-Seq data: an initial investigation , 2015, Royal Society Open Science.

[26]  J. Koene,et al.  DURATION OF SPERM STORAGE IN THE SIMULTANEOUS HERMAPHRODITE LYMNAEA STAGNALIS , 2014 .

[27]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[28]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. W. Gilmer,et al.  Pelagic Snails: The Biology of Holoplanktonic Gastropod Mollusks , 1989 .

[30]  A Sih,et al.  Emergent impacts of multiple predators on prey. , 1998, Trends in ecology & evolution.

[31]  H. Wägele,et al.  Initial results on the molecular phylogeny of the Nudibranchia (Gastropoda, Opisthobranchia) based on 18S rDNA data. , 1999, Molecular phylogenetics and evolution.

[32]  Niklas Wahlberg,et al.  Diversity begets diversity: host expansions and the diversification of plant-feeding insects , 2006, BMC Evolutionary Biology.

[33]  J. Huxley,et al.  Systematics and the Origin of Species from the Viewpoint of a Zoologist , 1943 .

[34]  Korbinian Strimmer,et al.  APE: Analyses of Phylogenetics and Evolution in R language , 2004, Bioinform..

[35]  Rainer Martin,et al.  Cnidosac morphology in dendronotacean and aeolidacean nudibranch molluscs: from expulsion of nematocysts to use in defense? , 2009 .

[36]  P. G. Greenwood Acquisition and use of nematocysts by cnidarian predators. , 2009, Toxicon : official journal of the International Society on Toxinology.

[37]  G. Bush SYMPATRIC HOST RACE FORMATION AND SPECIATION IN FRUGIVOROUS FLIES OF THE GENUS RHAGOLETIS (DIPTERA, TEPHRITIDAE) , 1969, Evolution; international journal of organic evolution.

[38]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[39]  K. Tolley,et al.  African parasitoid fig wasp diversification is a function of Ficus species ranges. , 2010, Molecular phylogenetics and evolution.

[40]  J. Duffy RESOURCE‐ASSOCIATED POPULATION SUBDIVISION IN A SYMBIOTIC CORAL‐REEF SHRIMP , 1996, Evolution; international journal of organic evolution.

[41]  T. Gosliner,et al.  Molecular data illuminate cryptic nudibranch species: the evolution of the Scyllaeidae (Nudibranchia: Dendronotina) with a revision of Notobryon , 2012 .

[42]  Robert J Toonen,et al.  The origins of tropical marine biodiversity. , 2013, Trends in ecology & evolution.

[43]  A. Kolb,et al.  Molecular phylogeny of the Euthyneura (Mollusca, Gastropoda) with spacial focus on Opisthobranchia as a framework for reconstruction of evolution of diet , 2011 .

[44]  Ryan E. Hulett,et al.  Molecular evaluation of the phylogenetic position of the enigmatic species Trivettea papalotla (Bertsch) (Mollusca : Nudibranchia) , 2015, Invertebrate Systematics.

[45]  E. Sotka Local adaptation in host use among marine invertebrates , 2005 .

[46]  T. Gosliner,et al.  The first molecular phylogeny of cladobranchian opisthobranchs (Mollusca, Gastropoda, Nudibranchia). , 2010, Molecular phylogenetics and evolution.

[47]  Ángel A. Valdés,et al.  Phylogenetic analysis of Dendronotus nudibranchs with emphasis on northeastern Pacific species , 2010 .

[48]  Sonia M. Shjegstad,et al.  Host specificity of four corallivorous Phestilla nudibranchs (Gastropoda: Opisthobranchia) , 2003 .

[49]  Simon P. Wilson,et al.  The Magnitude of Global Marine Species Diversity , 2012, Current Biology.

[50]  Molecular investigation of the phylogenetic position of the polar nudibranch Doridoxa (Mollusca, Gastropoda, Heterobranchia) , 2015, Polar Biology.

[51]  S. Kehraus,et al.  Dietary derived sesquiterpenes from Phyllodesmium lizardensis. , 2009, Journal of natural products.

[52]  R. Scott,et al.  British Antarctic ("Terra Nova") Expedition, 1910 : , 1917 .

[53]  G. C. Johns,et al.  Local Selection and Latitudinal Variation in a Marine Predator-Prey Interaction , 2003, Science.

[54]  Ángel A. Valdés,et al.  Afro-Eurasia and the Americas present barriers to gene flow for the cosmopolitan neustonic nudibranch Glaucus atlanticus , 2014 .

[55]  O. Mokady,et al.  Host-associated speciation in a coral-inhabiting barnacle. , 2001, Molecular biology and evolution.

[56]  J. Pearse,et al.  Impacts associated with the recent range shift of the aeolid nudibranch Phidiana hiltoni (Mollusca, Opisthobranchia) in California , 2011, Marine biology.

[57]  Kevin Jiang Introduction , 2013, Nature Medicine.

[58]  Ingo Ebersberger,et al.  HaMStR: Profile hidden markov model based search for orthologs in ESTs , 2009, BMC Evolutionary Biology.

[59]  E. Mayr GEOGRAPHIC SPECIATION IN TROPICAL ECHINOIDS , 1954 .

[60]  R. Ricklefs,et al.  Diversification and host switching in avian malaria parasites , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  G. König,et al.  Defensive strategies of Cladobranchia (Gastropoda, Opisthobranchia). , 2010, Natural product reports.

[62]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[63]  S. Via,et al.  Sympatric speciation in animals: the ugly duckling grows up. , 2001, Trends in ecology & evolution.

[64]  H. Wägele Potential key characters in Opisthobranchia (Gastropoda, Mollusca) enhancing adaptive radiation , 2004 .

[65]  R. Toonen,et al.  Host shift and speciation in a coral-feeding nudibranch , 2007, Proceedings of the Royal Society B: Biological Sciences.

[66]  J. Nybakken,et al.  List of the Worldwide Food Habits of Nudibranchs , 1997 .

[67]  D. R. Robertson,et al.  Ecological speciation in tropical reef fishes , 2005, Proceedings of the Royal Society B: Biological Sciences.

[68]  Jessica A. Goodheart,et al.  Phylogeny of Cladobranchia (Gastropoda: Nudibranchia): a total evidence analysis using DNA sequence data from public databases , 2015 .

[69]  A. Martynov,et al.  Integrative systematics of northern and Arctic nudibranchs of the genus Dendronotus (Mollusca, Gastropoda), with descriptions of three new species. , 2015 .

[70]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[71]  C. Todd,et al.  Some perspectives on the biology and ecology of nudibranch molluscs: generalisations and variations on the theme that prove the rule , 2001 .

[72]  T. Gosliner,et al.  The Atlantic-Mediterranean genus Berghia Trinchese, 1877 (Nudibranchia: Aeolidiidae): taxonomic review and phylogenetic analysis , 2014 .

[73]  P. Krug Patterns of Speciation in Marine Gastropods: A Review of the Phylogenetic Evidence for Localized Radiations in the Sea* , 2011 .

[74]  S. Schiaparelli,et al.  Host-shift speciation in Antarctic symbiotic invertebrates: further evidence from the new amphipod species Lepidepecreella debroyeri from the Ross Sea? , 2015, Hydrobiologia.

[75]  Jessica A. Goodheart,et al.  Sequestration of nematocysts by divergent cnidarian predators: mechanism, function, and evolution , 2017 .

[76]  Brian D. Farrell,et al.  Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles , 2015 .

[77]  S. Kahng,et al.  Observations on the life history and feeding ecology of a specialized nudibranch predator (Phyllodesmium poindimiei), with implications for biocontrol of an invasive octocoral (Carijoa riisei) in Hawaii , 2009 .

[78]  W. H. Dall British Antarctic "Terra Nova" Expedition, 1910 , 1914 .

[79]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[80]  P. Munday,et al.  Evidence for Sympatric Speciation by Host Shift in the Sea , 2004, Current Biology.

[81]  M. Thollesson Phylogenetic analysis of Euthyneura (Gastropoda) by means of the 16S rRNA gene: use of a ‘fast’gene for ‘higher–level’ phylogenies , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[82]  T. Gosliner,et al.  Molecular and morphological systematics of Doto Oken, 1851 (Gastropoda: Heterobranchia), with descriptions of five new species and a new genus. , 2015, Zootaxa.

[83]  Ángel A. Valdés,et al.  A tropical Atlantic species of Melibe Rang, 1829 (Mollusca, Nudibranchia, Tethyiidae) , 2013, ZooKeys.

[84]  C. D. Trowbridge,et al.  HOST-PLANT CHANGE IN MARINE SPECIALIST HERBIVORES: ASCOGLOSSAN SEA SLUGS ON INTRODUCED MACROALGAE , 2001 .

[85]  D. Clayton,et al.  There and back again: Switching between host orders by avian body lice (Ischnocera: Goniodidae) , 2011 .

[86]  M. Hay,et al.  GEOGRAPHIC AND GENETIC VARIATION IN FEEDING PREFERENCE FOR CHEMICALLY DEFENDED SEAWEEDS , 2003, Evolution; international journal of organic evolution.

[87]  T. Gosliner,et al.  Previously undocumented diversity and abundance of cryptic species: a phylogenetic analysis of Indo-Pacific Arminidae Rafinesque, 1814 (Mollusca: Nudibranchia) with descriptions of 20 new species of Dermatobranchus , 2011, Zoological journal of the Linnean Society.

[88]  G. A. Horridge,et al.  Animal species and evolution. , 1964 .

[89]  J. Coll THE CHEMISTRY AND CHEMICAL ECOLOGY OF OCTOCORALS (COELENTERATA, ANTHOZOA, OCTOCORALLIA) , 1992 .

[90]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[91]  Robert D. Holt,et al.  A Theoretical Framework for Intraguild Predation , 1997, The American Naturalist.

[92]  H. Ishikawa,et al.  Molecular phylogeny of the bivalve superfamily Galeommatoidea (Heterodonta, Veneroida) reveals dynamic evolution of symbiotic lifestyle and interphylum host switching , 2012, BMC Evolutionary Biology.

[93]  T. Gosliner,et al.  Systematics and preliminary phylogeny of Bornellidae (Mollusca: Nudibranchia: Dendronotina) based on morphological characters with description of four new species , 2009 .

[94]  J. Nybakken,et al.  A Preliminary Report on a World-Wide Review of the Food of Nudibranchs , 1991 .

[95]  Z. Yang,et al.  Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. , 1993, Molecular biology and evolution.

[96]  L. Moroz,et al.  PhyloTreePruner: A Phylogenetic Tree-Based Approach for Selection of Orthologous Sequences for Phylogenomics , 2013, Evolutionary bioinformatics online.

[97]  M. Stanhope,et al.  Evolution of a crustacean chemical communication channel: Behavioral and ecological genetic evidence for a habitat-modified, race-specific pheromone , 1992, Journal of Chemical Ecology.

[98]  M. T. R. Almeida,et al.  Chemical and biological aspects of octocorals from the Brazilian coast , 2014 .