Towards synergistic models of motion information processing in biological and artificial vision. (Vers des modèles synergiques de l'estimation du mouvement en vision biologique et artificielle)

This thesis addresses the study of the motion perception in primates. We propose that scaling up the models rooted in biological vision by taking a task centric approach would gives us further insights to probe biological vision and better constraints to design models. The first part of this thesis relates to a feedforward view of how the motion information is processed in the mammalian brains with specific focus on areas V1 and MT. Based on a standard physiological model describing the activity of motion sensitive neurons in areas V1 and MT, we propose a feedforward model for dense optical flow estimation. This feedforward V1-MT model is benchmarked with modern computer vision datasets and results form a basis to study multiple aspects of dense motion estimation. Benchmarking results demonstrated that a sharp optical flow map cannot be obtained by considering isotropic pooling and motion estimation is disrupted in regions close to object or motion boundaries. It also shows a blindspot in the modelling literature that spatial association of the extracted motion information has not been attempted or has been limited to recovering coarser attributes. In order to improve the motion estimation, we investigated the pooling by MT neurons in terms of spatial-extent and selectivity for integration as well as the decoding strategy in order to obtain a spatially dense optical flow map. We show that by incorporating a pooling strategy that is regulated by form-based cues and considering lateral propagation of the activity, the motion estimation quality is improved. Interestingly, incorporating the form based cues amounts to addition of neurons with different kinds of selectivity to the network. This raises a question, whether or not a minimal network with recurrent interactions in feature domain can exhibit different kinds of feature selectivities or we need to consider explicitly cells with different kinds of selectivity? This question relates to the second part of the thesis. We investigated this question using a ring network model under neural fields formalism with motion direction as feature space, closely mimicing MT physiological experiments. Our model produced a rich variety of results. Our results indicate that a variety of tuning behaviors found in MT area can be reproduced by a minimal network of directionally tuned cells, explicit 2D cues need not be required for motion integration, dynamical changes inthe MT neuronal tuning reported in the literature can be explained through feature domain recurrent interactions and also open the door for accounting transparency by challenging the high inhibition regimes considered by many models in the literature for motion integration. To conclude, we re-emphasize on task-centric modelling approaches and several directions for interfacing studies in biological and computer vision.

[1]  J. Victor,et al.  The unsteady eye: an information-processing stage, not a bug , 2015, Trends in Neurosciences.

[2]  Heiko Neumann,et al.  A Model of Motion Transparency Processing with Local Center-Surround Interactions and Feedback , 2011, Neural Computation.

[3]  Alan L. Yuille,et al.  A Winner-Take-All Mechanism Based on Presynaptic Inhibition Feedback , 1989, Neural Computation.

[4]  C. von der Malsburg The what and why of binding: the modeler's perspective. , 1999, Neuron.

[5]  Walter J. Scheirer,et al.  Perceptual Annotation: Measuring Human Vision to Improve Computer Vision , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  A. V. van den Berg,et al.  The role of early mechanisms in motion transparency and coherence. , 1993, Spatial vision.

[7]  Ruye Wang,et al.  A Network Model of Motion Processing in Area MT of Primates , 1997, Journal of Computational Neuroscience.

[8]  E. Adelson,et al.  Directionally selective complex cells and the computation of motion energy in cat visual cortex , 1992, Vision Research.

[9]  Stefan Treue,et al.  Seeing multiple directions of motion—physiology and psychophysics , 2000, Nature Neuroscience.

[10]  F. Chavane,et al.  Dynamics of Local Input Normalization Result from Balanced Short- and Long-Range Intracortical Interactions in Area V1 , 2012, The Journal of Neuroscience.

[11]  Maria Petrou,et al.  Next Generation Artificial Vision Systems - Reverse Engineering the Human Visual System , 2008, Artech House Series Bioinformatics and Biomedical Imaging.

[12]  Alexander Borst,et al.  Correlation versus gradient type motion detectors: the pros and cons , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[13]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[14]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[15]  Yair Weiss Bayesian motion estimation and segmentation , 1998 .

[16]  Stephen Grossberg,et al.  Absolute stability of global pattern formation and parallel memory storage by competitive neural networks , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[17]  L. Lagnado,et al.  Encoding of Luminance and Contrast by Linear and Nonlinear Synapses in the Retina , 2012, Neuron.

[18]  S. Ullman Object recognition and segmentation by a fragment-based hierarchy , 2007, Trends in Cognitive Sciences.

[19]  Eero P. Simoncelliy,et al.  Computing Optical Flow Distributions Using Spatio-temporal Filters , 1996 .

[20]  R. Douglas,et al.  Event-Based Neuromorphic Systems , 2015 .

[21]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[22]  F. Chavane,et al.  Imaging cortical correlates of illusion in early visual cortex , 2004, Nature.

[23]  Pieter R. Roelfsema,et al.  Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks , 2015, PLoS Comput. Biol..

[24]  Pierre Kornprobst,et al.  A retinotopic neural fields model of perceptual switching in 2D motion integration , 2013 .

[25]  A. Borst Fly visual course control: behaviour, algorithms and circuits , 2014, Nature Reviews Neuroscience.

[26]  G. Rizzolatti,et al.  Neural and Computational Mechanisms of Action Processing: Interaction between Visual and Motor Representations , 2015, Neuron.

[27]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[28]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[29]  Smith-Kettlewell,et al.  BIOLOGICAL IMAGE MOTION PROCESSING : A REVIEW , 2012 .

[30]  C. Gilbert,et al.  Spatial distribution of contextual interactions in primary visual cortex and in visual perception. , 2000, Journal of neurophysiology.

[31]  David J. Freedman,et al.  Dynamic Integration of Task-Relevant Visual Features in Posterior Parietal Cortex , 2014, Neuron.

[32]  Onkar S. Dhande,et al.  Retinal ganglion cell maps in the brain: implications for visual processing , 2014, Current Opinion in Neurobiology.

[33]  Yann LeCun,et al.  What is the best multi-stage architecture for object recognition? , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[34]  Thomas L. Dean,et al.  Neural Networks and Neuroscience-Inspired Computer Vision , 2014, Current Biology.

[35]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[36]  Jitendra Malik,et al.  Figure/Ground Assignment in Natural Images , 2006, ECCV.

[37]  Zhi-Hong Mao,et al.  Dynamics of Winner-Take-All Competition in Recurrent Neural Networks With Lateral Inhibition , 2007, IEEE Transactions on Neural Networks.

[38]  D. Bradley,et al.  Velocity computation in the primate visual system , 2008, Nature Reviews Neuroscience.

[39]  S. Kastner,et al.  From Behavior to Neural Dynamics: An Integrated Theory of Attention , 2015, Neuron.

[40]  S. Grossberg,et al.  How does a brain build a cognitive code? , 1980, Psychological review.

[41]  Victor A. F. Lamme,et al.  The implementation of visual routines , 2000, Vision Research.

[42]  Joachim Weickert,et al.  Relations Between Regularization and Diffusion Filtering , 2000, Journal of Mathematical Imaging and Vision.

[43]  R. von der Heydt,et al.  A neural model of figure-ground organization. , 2007, Journal of neurophysiology.

[44]  D. C. Essen,et al.  Neurons in monkey visual area V2 encode combinations of orientations , 2007, Nature Neuroscience.

[45]  Heiko Neumann,et al.  Disambiguating Visual Motion by Form-Motion Interaction—a Computational Model , 2007, International Journal of Computer Vision.

[46]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[47]  Wei Ji Ma,et al.  Neural coding of uncertainty and probability. , 2014, Annual review of neuroscience.

[48]  HyungGoo R. Kim,et al.  A novel role for visual perspective cues in the neural computation of depth , 2014, Nature Neuroscience.

[49]  J. Nassi,et al.  Corticocortical feedback increases the spatial extent of normalization , 2014, Front. Syst. Neurosci..

[50]  John K. Tsotsos,et al.  The Roles of Endstopped and Curvature Tuned Computations in a Hierarchical Representation of 2D Shape , 2012, PloS one.

[51]  Ohad Ben-Shahar,et al.  Geometrical Computations Explain Projection Patterns of Long-Range Horizontal Connections in Visual Cortex , 2004, Neural Computation.

[52]  Seunghoon Hong,et al.  Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation , 2015, NIPS.

[53]  Guillaume S. Masson,et al.  Motion-Based Prediction Is Sufficient to Solve the Aperture Problem , 2012, Neural Computation.

[54]  Alexander Grunewald,et al.  Neural Correlates of Structure-from-Motion Perception in Macaque V1 and MT , 2002, The Journal of Neuroscience.

[55]  Yaser S. Abu-Mostafa,et al.  On the K-Winners-Take-All Network , 1988, NIPS.

[56]  H. C. Nothdurft,et al.  Texture segmentation and pop-out from orientation contrast , 1991, Vision Research.

[57]  D. Ballard,et al.  Eye movements in natural behavior , 2005, Trends in Cognitive Sciences.

[58]  Michel Vidal-Naquet,et al.  Visual features of intermediate complexity and their use in classification , 2002, Nature Neuroscience.

[59]  Bruno Cessac,et al.  EnaS: a new software for neural population analysis in large scale spiking networks , 2013, BMC Neuroscience.

[60]  A. Angelucci,et al.  Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. , 2006, Progress in brain research.

[61]  Ryad Benosman,et al.  Artificial retina: the multichannel processing of the mammalian retina achieved with a neuromorphic asynchronous light acquisition device , 2012, Journal of neural engineering.

[62]  Sergio Cuenca-Asensi,et al.  RetinaStudio: A bioinspired framework to encode visual information , 2013, Neurocomputing.

[63]  Christopher C. Pack,et al.  Hierarchical processing of complex motion along the primate dorsal visual pathway , 2012, Proceedings of the National Academy of Sciences.

[64]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[65]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[66]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[67]  Roel M. Willems Re-Appreciating the Why of Cognition: 35 Years after Marr and Poggio , 2011, Front. Psychology.

[68]  A. Oliva,et al.  Segmentation of objects from backgrounds in visual search tasks , 2002, Vision Research.

[69]  P. Roelfsema Elemental operations in vision , 2005, Trends in Cognitive Sciences.

[70]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[71]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[72]  David D. Cox,et al.  A High-Throughput Screening Approach to Discovering Good Forms of Biologically Inspired Visual Representation , 2009, PLoS Comput. Biol..

[73]  E. Brunswik,et al.  Ecological cue-validity of proximity and of other Gestalt factors. , 1953, The American journal of psychology.

[74]  Heiko Neumann,et al.  Disambiguating Visual Motion Through Contextual Feedback Modulation , 2004, Neural Computation.

[75]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[76]  Tobias Brosch,et al.  On event-based optical flow detection , 2015, Front. Neurosci..

[77]  Bard Ermentrout,et al.  Pattern Formation in a Network of Excitatory and Inhibitory Cells with Adaptation , 2004, SIAM J. Appl. Dyn. Syst..

[78]  Mark Nawrot,et al.  MT Neurons Combine Visual Motion with a Smooth Eye Movement Signal to Code Depth-Sign from Motion Parallax , 2009, Neuron.

[79]  Stephan Tschechne,et al.  Hierarchical representation of shapes in visual cortex—from localized features to figural shape segregation , 2014, Front. Comput. Neurosci..

[80]  Daniel Cremers,et al.  Structure- and motion-adaptive regularization for high accuracy optic flow , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[81]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[82]  Yves Frégnac,et al.  Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons , 2013, Front. Neural Circuits.

[83]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[84]  H. Spekreijse,et al.  FigureGround Segregation in a Recurrent Network Architecture , 2002, Journal of Cognitive Neuroscience.

[85]  PollefeysMarc,et al.  Learning a Confidence Measure for Optical Flow , 2013 .

[86]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[87]  Pieter R. Roelfsema,et al.  Surface reconstruction, figure-ground modulation, and border-ownership , 2013, Cognitive neuroscience.

[88]  H. Sompolinsky,et al.  Theory of orientation tuning in visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[89]  C. Enroth-Cugell,et al.  Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. , 1984, Investigative ophthalmology & visual science.

[90]  M. Carandini,et al.  Mapping of stimulus energy in primary visual cortex. , 2005, Journal of neurophysiology.

[91]  R. Shapley,et al.  Contrast's effect on spatial summation by macaque V1 neurons , 1999, Nature Neuroscience.

[92]  M. Carandini,et al.  Normalization as a canonical neural computation , 2011, Nature Reviews Neuroscience.

[93]  Yoichi Sugita,et al.  Grouping of image fragments in primary visual cortex , 1999, Nature.

[94]  Alexei A. Efros,et al.  Recovering Occlusion Boundaries from an Image , 2011, International Journal of Computer Vision.

[95]  S Ullman,et al.  Sequence seeking and counter streams: a computational model for bidirectional information flow in the visual cortex. , 1995, Cerebral cortex.

[96]  E. Peterhans,et al.  Subjective contours - bridging the gap between psychophysics and physiology , 1991, Trends in Neurosciences.

[97]  Richard Granger,et al.  A cortical model of winner-take-all competition via lateral inhibition , 1992, Neural Networks.

[98]  E. Adelson,et al.  The Plenoptic Function and the Elements of Early Vision , 1991 .

[99]  Bard Ermentrout,et al.  Complex dynamics in winner-take-all neural nets with slow inhibition , 1992, Neural Networks.

[100]  John K. Tsotsos,et al.  It’s all about the constraints , 2014, Current Biology.

[101]  H. Neumann,et al.  The Role of Attention in Figure-Ground Segregation in Areas V1 and V4 of the Visual Cortex , 2012, Neuron.

[102]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[103]  Pierre Kornprobst,et al.  Improving FREAK Descriptor for Image Classification , 2015, ICVS.

[104]  P. Kornprobst,et al.  Modelling the dynamics of motion integration with a new luminance-gated diffusion mechanism , 2010, Vision Research.

[105]  J. Movshon,et al.  Temporal and spatial limits of pattern motion sensitivity in macaque MT neurons. , 2015, Journal of neurophysiology.

[106]  Jitendra Malik,et al.  Local figure-ground cues are valid for natural images. , 2007, Journal of vision.

[107]  O. Braddick Segmentation versus integration in visual motion processing , 1993, Trends in Neurosciences.

[108]  M. Carandini From circuits to behavior: a bridge too far? , 2012, Nature Neuroscience.

[109]  N. Qian,et al.  A Physiological Model for Motion-Stereo Integration and a Unified Explanation of Pulfrich-like Phenomena , 1997, Vision Research.

[110]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[111]  Alice Caplier,et al.  Using Human Visual System modeling for bio-inspired low level image processing , 2010, Comput. Vis. Image Underst..

[112]  Hamutal Slovin,et al.  Population Responses to Contour Integration: Early Encoding of Discrete Elements and Late Perceptual Grouping , 2013, Neuron.

[113]  R. Desimone,et al.  Local precision of visuotopic organization in the middle temporal area (MT) of the macaque , 2004, Experimental Brain Research.

[114]  Marcel A. J. van Gerven,et al.  Deep Neural Networks Reveal a Gradient in the Complexity of Neural Representations across the Ventral Stream , 2014, The Journal of Neuroscience.

[115]  Thomas Wennekers,et al.  Pattern formation in intracortical neuronal fields , 2003, Network.

[116]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[117]  Thomas D. Albright,et al.  Neural correlates of perceptual motion coherence , 1992, Nature.

[118]  M. Hayhoe,et al.  Integration of Form across Saccadic Eye Movements , 1991, Perception.

[119]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[120]  Wilson S. Geisler,et al.  Motion streaks provide a spatial code for motion direction , 1999, Nature.

[121]  Victor A. F. Lamme,et al.  Figure-ground activity in primary visual cortex is suppressed by anesthesia. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Tomaso A. Poggio,et al.  Motion Field and Optical Flow: Qualitative Properties , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[123]  Simon J Thorpe,et al.  The Speed of Categorization in the Human Visual System , 2009, Neuron.

[124]  Eero P. Simoncelli Coarse-to-fine estimation of visual motion , 1993 .

[125]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[126]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[127]  Laurence Meylan,et al.  Model of retinal local adaptation for the tone mapping of color filter array images. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[128]  Naoki Kogo,et al.  The “side” matters: How configurality is reflected in completion , 2013, Cognitive neuroscience.

[129]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[130]  Shimon Ullman,et al.  Atoms of recognition in human and computer vision , 2016, Proceedings of the National Academy of Sciences.

[131]  Johannes J. Fahrenfort,et al.  Feedforward and Recurrent Processing in Scene Segmentation: Electroencephalography and Functional Magnetic Resonance Imaging , 2008, Journal of Cognitive Neuroscience.

[132]  Markus Lappe,et al.  Functional Consequences of an Integration of Motion and Stereopsis in Area MT of Monkey Extrastriate Visual Cortex , 1996, Neural Computation.

[133]  E. Olivier Modelling the dynamics of contextual motion integration in the primate , 2011 .

[134]  A. Sillito,et al.  Looking back: corticothalamic feedback and early visual processing , 2006, Trends in Neurosciences.

[135]  T. Delbruck,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[136]  K. Fukushima Neural network model for selective attention in visual pattern recognition and associative recall. , 1987, Applied optics.

[137]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[138]  Albert Newen,et al.  Varieties of cognitive penetration in visual perception , 2014, Consciousness and Cognition.

[139]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[140]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[141]  Haluk Öğmen,et al.  Feedforward and feedback processes in vision , 2015, Front. Psychol..

[142]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[143]  R. Shapley,et al.  Dynamics of Orientation Selectivity in the Primary Visual Cortex and the Importance of Cortical Inhibition , 2003, Neuron.

[144]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[145]  H. Wallach On the visually perceived direction of motion ' ' by Hans Wallach : 60 years later , 1997 .

[146]  P. Milner A model for visual shape recognition. , 1974, Psychological review.

[147]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[148]  P. Kellman,et al.  A theory of visual interpolation in object perception , 1991, Cognitive Psychology.

[149]  Michael S. Landy,et al.  Computational models of visual attention , 2011, Vision Research.

[150]  Heiko Neumann,et al.  A Fast Biologically Inspired Algorithm for Recurrent Motion Estimation , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[151]  Alessandro Verri,et al.  Against Quantitative Optical Flow , 1987 .

[152]  W. D. Ross,et al.  Visual brain and visual perception: how does the cortex do perceptual grouping? , 1997, Trends in Neurosciences.

[153]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[154]  R. Masland The Neuronal Organization of the Retina , 2012, Neuron.

[155]  Yves Frégnac,et al.  Cortical Correlates of Low-Level Perception: From Neural Circuits to Percepts , 2015, Neuron.

[156]  David A. Clausi,et al.  Designing Gabor filters for optimal texture separability , 2000, Pattern Recognit..

[157]  M. Carandini,et al.  Predictions of a recurrent model of orientation selectivity , 1997, Vision Research.

[158]  Edward M. Callaway,et al.  A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex , 2014 .

[159]  Patrick Bouthemy,et al.  Optical flow modeling and computation: A survey , 2015, Comput. Vis. Image Underst..

[160]  Kenneth D. Miller,et al.  Adaptive filtering enhances information transmission in visual cortex , 2006, Nature.

[161]  David J. Heeger,et al.  Optical flow using spatiotemporal filters , 2004, International Journal of Computer Vision.

[162]  Michael J. Black,et al.  A Naturalistic Open Source Movie for Optical Flow Evaluation , 2012, ECCV.

[163]  J Anthony Movshon,et al.  Putting big data to good use in neuroscience , 2014, Nature Neuroscience.

[164]  Eero P. Simoncelli,et al.  A functional and perceptual signature of the second visual area in primates , 2013, Nature Neuroscience.

[165]  Thomas Brox,et al.  FlowNet: Learning Optical Flow with Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[166]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[167]  Richard J Krauzlis,et al.  Spatial integration by MT pattern neurons: a closer look at pattern-to-component effects and the role of speed tuning. , 2008, Journal of vision.

[168]  Alexander Thiele,et al.  Neural Correlates of Chromatic Motion Perception , 2001, Neuron.

[169]  A. Pouget,et al.  Probabilistic brains: knowns and unknowns , 2013, Nature Neuroscience.

[170]  Anita Sellent,et al.  Motion Field Estimation from Alternate Exposure Images , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[171]  Richard T Born,et al.  Joint tuning for direction of motion and binocular disparity in macaque MT is largely separable. , 2013, Journal of neurophysiology.

[172]  Yuwei Cui,et al.  Diverse Suppressive Influences in Area MT and Selectivity to Complex Motion Features , 2013, The Journal of Neuroscience.

[173]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[174]  Jitendra Malik,et al.  A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[175]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[176]  Marc Pollefeys,et al.  Learning a Confidence Measure for Optical Flow , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[177]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[178]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[179]  Patrick Le Callet,et al.  Spatio-temporal Tone Mapping Operator Based on a Retina Model , 2009, CCIW.

[180]  Xin Huang,et al.  Distributed and Dynamic Neural Encoding of Multiple Motion Directions of Transparently Moving Stimuli in Cortical Area MT , 2015, The Journal of Neuroscience.

[181]  Hugh R. Wilson,et al.  Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity , 1992, Vision Research.

[182]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[183]  Nicholas J. Priebe,et al.  The Neural Representation of Speed in Macaque Area MT/V5 , 2003, The Journal of Neuroscience.

[184]  Martial Hebert,et al.  Occlusion Boundaries from Motion: Low-Level Detection and Mid-Level Reasoning , 2009, International Journal of Computer Vision.

[185]  Jeanny Herault Vision: Images, Signals and Neural Networks - Models of Neural Processing in Visual Perception , 2010 .

[186]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[187]  Thomas Brox,et al.  A Unified Video Segmentation Benchmark: Annotation, Metrics and Analysis , 2013, 2013 IEEE International Conference on Computer Vision.

[188]  Michael N. Shadlen,et al.  Synchrony Unbound A Critical Evaluation of the Temporal Binding Hypothesis , 1999, Neuron.

[189]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[190]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[191]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[192]  Chethan Pandarinath,et al.  Symmetry Breakdown in the ON and OFF Pathways of the Retina at Night: Functional Implications , 2010, The Journal of Neuroscience.

[193]  C. Gilbert,et al.  Learning to Link Visual Contours , 2008, Neuron.

[194]  Jeanny Hérault,et al.  Modeling Visual Perception for Image Processing , 2007, IWANN.

[195]  T. Albright,et al.  Contribution of area MT to perception of three-dimensional shape: a computational study , 1996, Vision Research.

[196]  S. Grossberg,et al.  Neural dynamics of form perception: boundary completion, illusory figures, and neon color spreading. , 1985, Psychological review.

[197]  Jitendra Malik,et al.  Occlusion boundary detection and figure/ground assignment from optical flow , 2011, CVPR 2011.

[198]  J. Perrone A neural-based code for computing image velocity from small sets of middle temporal (MT/V5) neuron inputs. , 2012, Journal of vision.

[199]  T. Poggio The Levels of Understanding Framework, Revised , 2012, Perception.

[200]  Stephen G Lisberger,et al.  Visual Guidance of Smooth-Pursuit Eye Movements: Sensation, Action, and What Happens in Between , 2010, Neuron.

[201]  M. Shiffrar,et al.  Perceived speed of moving lines depends on orientation, length, speed and luminance , 1993, Vision Research.

[202]  Nikolaus Kriegeskorte,et al.  Relating Population-Code Representations between Man, Monkey, and Computational Models , 2009, Front. Neurosci..

[203]  William J. Wolfe,et al.  K-winner networks , 1991, IEEE Trans. Neural Networks.

[204]  R Shapley,et al.  Visual sensitivity and parallel retinocortical channels. , 1990, Annual review of psychology.

[205]  Bevil R. Conway,et al.  Space-time maps and two-bar interactions of different classes of direction-selective cells in macaque V-1. , 2003, Journal of neurophysiology.

[206]  Shimon Ullman,et al.  Combined Top-Down/Bottom-Up Segmentation , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[207]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[208]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[209]  Edoardo Provenzi,et al.  An Analysis of Visual Adaptation and Contrast Perception for Tone Mapping , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[210]  H. Kennedy,et al.  A Large-Scale Circuit Mechanism for Hierarchical Dynamical Processing in the Primate Cortex , 2015, Neuron.

[211]  M. Giese Dynamic neural field theory for motion perception , 1998 .

[212]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[213]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[214]  L. Pessoa,et al.  Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. , 1998, The Behavioral and brain sciences.

[215]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[216]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[217]  John K. Tsotsos,et al.  Towards the Quantitative Evaluation of Visual Attention Models Bottom−up Top-down Dynamic Static 0 0 0 , 2022 .

[218]  Tirin Moore,et al.  Prefrontal contributions to visual selective attention. , 2013, Annual review of neuroscience.

[219]  Moshe Gur,et al.  Space reconstruction by primary visual cortex activity: a parallel, non-computational mechanism of object representation , 2015, Trends in Neurosciences.

[220]  Garrick Orchard,et al.  Neuromorphic Event-Based 3D Pose Estimation , 2016, Front. Neurosci..

[221]  M. Goodale,et al.  Two visual systems re-viewed , 2008, Neuropsychologia.

[222]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[223]  E J Chichilnisky,et al.  A simple white noise analysis of neuronal light responses , 2001, Network.

[224]  Timothy Ledgeway,et al.  The orientation tuning of motion streak mechanisms revealed by masking. , 2013 .

[225]  Lotfi B. Merabet,et al.  Motion integration in a thalamic visual nucleus , 1998, Nature.

[226]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[227]  Pierre Kornprobst,et al.  Virtual Retina: A biological retina model and simulator, with contrast gain control , 2009, Journal of Computational Neuroscience.

[228]  G. Reeke,et al.  Network model of top-down influences on local gain and contextual interactions in visual cortex , 2013, Proceedings of the National Academy of Sciences.

[229]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[230]  G. Edelman Neural Darwinism: Selection and reentrant signaling in higher brain function , 1993, Neuron.

[231]  Guillermo Sapiro,et al.  Robust anisotropic diffusion , 1998, IEEE Trans. Image Process..

[232]  W. Usrey,et al.  Emerging views of corticothalamic function , 2008, Current Opinion in Neurobiology.

[233]  A. Sillito,et al.  Corticothalamic feedback enhances stimulus response precision in the visual system , 2007, Proceedings of the National Academy of Sciences.

[234]  G. DeAngelis,et al.  A Normalization Model of Multisensory Integration , 2011, Nature Neuroscience.

[235]  C. P. A C O R E T,et al.  Asynchronous event-based high speed vision for microparticle tracking , 2011 .

[236]  Manuela Chessa,et al.  Adaptive Motion Pooling and Diffusion for Optical Flow Computation , 2015, ICIAP Workshops.

[237]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[238]  M. Rasch,et al.  Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1. , 2013, Journal of neurophysiology.

[239]  M. Peterson,et al.  Inhibitory competition in figure-ground perception: context and convexity. , 2008, Journal of vision.

[240]  J. Movshon,et al.  Dynamics of Macaque MT Cell Responses to Grating Triplets , 2012, The Journal of Neuroscience.

[241]  Matthew Casey,et al.  Simulating Light Adaptation in the Retina with Rod-Cone Coupling , 2012, ICANN.

[242]  T. Poggio,et al.  A model of V4 shape selectivity and invariance. , 2007, Journal of neurophysiology.

[243]  Pierre Kornprobst,et al.  Action recognition via bio-inspired features: The richness of center-surround interaction , 2012, Comput. Vis. Image Underst..

[244]  Hans Wallach Über visuell wahrgenommene Bewegungsrichtung , 1935 .

[245]  Guillaume S. Masson,et al.  The behavioral receptive field underlying motion integration for primate tracking eye movements , 2012, Neuroscience & Biobehavioral Reviews.

[246]  P. Roelfsema,et al.  Incremental grouping of image elements in vision , 2011, Attention, perception & psychophysics.

[247]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[248]  C. Gilbert,et al.  Improvement in visual sensitivity by changes in local context: Parallel studies in human observers and in V1 of alert monkeys , 1995, Neuron.

[249]  Marian Stamp Dawkins,et al.  The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. By Edmund T. Rolls & Gustavo Deco. Oxford: Oxford University Press (2010). Pp. 310. Price £37.95 hardback. , 2010, Animal Behaviour.

[250]  M M Hayhoe,et al.  Spatio-temporal organization of behavior. , 2000, Spatial vision.

[251]  G. Mather,et al.  Psychophysical evidence for interactions between visual motion and form processing at the level of motion integrating receptive fields , 2012, Neuropsychologia.

[252]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[253]  Maoz Shamir,et al.  Emerging principles of population coding: in search for the neural code , 2014, Current Opinion in Neurobiology.

[254]  John H. R. Maunsell,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. II. Binocular interactions and sensitivity to binocular disparity. , 1983, Journal of neurophysiology.

[255]  Nicholas T. Carnevale,et al.  ModelDB: A Database to Support Computational Neuroscience , 2004, Journal of Computational Neuroscience.

[256]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[257]  J. Anthony Movshon,et al.  Dissociation of Neuronal and Psychophysical Responses to Local and Global Motion , 2011, Current Biology.

[258]  Meghanad D. Wagh,et al.  Criticality of lateral inhibition for edge enhancement in neural systems , 2007, Neurocomputing.

[259]  Tim Gollisch,et al.  Eye Smarter than Scientists Believed: Neural Computations in Circuits of the Retina , 2010, Neuron.

[260]  Nicole C. Rust,et al.  Do We Know What the Early Visual System Does? , 2005, The Journal of Neuroscience.

[261]  J. B. Demb,et al.  Functional circuitry of visual adaptation in the retina , 2008, The Journal of physiology.

[262]  Shih-Chii Liu,et al.  Neuromorphic sensory systems , 2010, Current Opinion in Neurobiology.

[263]  Edward H. Adelson,et al.  PYRAMID METHODS IN IMAGE PROCESSING. , 1984 .

[264]  Stephan Tschechne,et al.  Bio-Inspired Optic Flow from Event-Based Neuromorphic Sensor Input , 2014, ANNPR.

[265]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.

[266]  Selina S. Solomon,et al.  Integration and segregation of multiple motion signals by neurons in area MT of primate. , 2014, Journal of neurophysiology.

[267]  Daniel Matolin,et al.  A QVGA 143 dB Dynamic Range Frame-Free PWM Image Sensor With Lossless Pixel-Level Video Compression and Time-Domain CDS , 2011, IEEE Journal of Solid-State Circuits.

[268]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[269]  Marcelo Bertalmío,et al.  Image Processing for Cinema , 2014 .

[270]  Christopher C. Pack,et al.  Cortical Mechanisms for the Integration of Visual Motion , 2008 .

[271]  Leonard E. White,et al.  Mapping multiple features in the population response of visual cortex , 2003, Nature.

[272]  Jessika Weiss,et al.  Vision Science Photons To Phenomenology , 2016 .

[273]  Tomoki Fukai,et al.  A Simple Neural Network Exhibiting Selective Activation of Neuronal Ensembles: From Winner-Take-All to Winners-Share-All , 1997, Neural Computation.

[274]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[275]  Guillaume S Masson,et al.  Object motion computation for the initiation of smooth pursuit eye movements in humans. , 2005, Journal of neurophysiology.

[276]  John K. Tsotsos,et al.  50 Years of object recognition: Directions forward , 2013, Comput. Vis. Image Underst..

[277]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[278]  Heiko Neumann,et al.  A neural model of the temporal dynamics of figure-ground segregation in motion perception , 2010, Neural Networks.

[279]  Christopher C. Pack,et al.  The role of V1 surround suppression in MT motion integration. , 2010, Journal of neurophysiology.

[280]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[281]  Yan Zhuo,et al.  Contributions of the Visual Ventral Pathway to Long-Range Apparent Motion , 2003, Science.

[282]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[283]  F. Chavane,et al.  The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave , 2014, Nature Communications.

[284]  Peter E. Latham,et al.  Statistically Efficient Estimation Using Population Coding , 1998, Neural Computation.

[285]  Chiara Bartolozzi,et al.  Asynchronous frameless event-based optical flow , 2012, Neural Networks.

[286]  S. Ullman,et al.  Curve tracing: A possible basic operation in the perception of spatial relations , 1986, Memory & cognition.

[287]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[288]  G. Schneider Two visual systems. , 1969, Science.

[289]  Mi-Suen Lee,et al.  A Computational Framework for Segmentation and Grouping , 2000 .

[290]  Peter C. M. Molenaar,et al.  Numerical bifurcation analysis of distance-dependent on-center off-surround shunting neural networks , 1996, Biological Cybernetics.

[291]  R. Zemel,et al.  Inference and computation with population codes. , 2003, Annual review of neuroscience.

[292]  Pierre Kornprobst,et al.  Action Recognition Using a Bio-Inspired Feedforward Spiking Network , 2009, International Journal of Computer Vision.

[293]  J. Sanes,et al.  The most numerous ganglion cell type of the mouse retina is a selective feature detector , 2012, Proceedings of the National Academy of Sciences.

[294]  Olivier D. Faugeras,et al.  Bifurcation analysis applied to a model of motion integration with a multistable stimulus , 2012, Journal of Computational Neuroscience.

[295]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[296]  Pierre Kornprobst,et al.  Bio-inspired computer vision: Towards a synergistic approach of artificial and biological vision , 2016, Comput. Vis. Image Underst..

[297]  Manuela Chessa,et al.  What can we expect from a classical V1-MT feedforward architecture for optical flow estimation? , 2014 .

[298]  Samuel Kaski,et al.  Winner-take-all networks for physiological models of competitive learning , 1994, Neural Networks.

[299]  Seunghoon Hong,et al.  Learning Deconvolution Network for Semantic Segmentation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[300]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[301]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[302]  Frances S. Chance,et al.  Complex cells as cortically amplified simple cells , 1999, Nature Neuroscience.

[303]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[304]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[305]  Pascal Mamassian,et al.  More is not always better: adaptive gain control explains dissociation between perception and action , 2012, Nature Neuroscience.

[306]  Heiko Neumann,et al.  Active Gaze Control Improves Optic Flow-Based Segmentation and Steering , 2012, PloS one.

[307]  R. Masland Cell populations of the retina: the Proctor lecture. , 2011, Investigative ophthalmology & visual science.

[308]  Pierre Kornprobst,et al.  Tracking segmented objects using tensor voting , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[309]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[310]  G D Field,et al.  Information processing in the primate retina: circuitry and coding. , 2007, Annual review of neuroscience.

[311]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[312]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[313]  Patrick Bouthemy,et al.  Joint Motion Estimation and Layer Segmentation in Transparent Image Sequences—Application to Noise Reduction in X-Ray Image Sequences , 2009, EURASIP J. Adv. Signal Process..

[314]  D. Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[315]  Javier Baladron Pezoa,et al.  Exploring the neural codes using parallel hardware , 2013 .

[316]  Pierre Kornprobst,et al.  Bio-Inspired Computer Vision: Setting the Basis for a New Departure , 2015 .

[317]  H. Neumann,et al.  Extraction of Surface-Related Features in a Recurrent Model of V1-V2 Interactions , 2009, PloS one.

[318]  P. Sivakumar,et al.  A REVIEW ON IMAGE SEGMENTATION TECHNIQUES , 2016 .

[319]  Alan Johnston,et al.  The role of the harmonic vector average in motion integration , 2013, Front. Comput. Neurosci..

[320]  R A Andersen,et al.  Transparent motion perception as detection of unbalanced motion signals. III. Modeling , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[321]  Toronto Spatial Vision in Humans and Robots , 1995, Neurology.

[322]  Olivier D. Faugeras,et al.  Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration , 2013, Journal of Computational Neuroscience.

[323]  Andrew Turpin,et al.  PsyPad: a platform for visual psychophysics on the iPad. , 2014, Journal of vision.

[324]  Alexander Thiele,et al.  Speed skills: measuring the visual speed analyzing properties of primate MT neurons , 2001, Nature Neuroscience.

[325]  Christopher C. Pack,et al.  Integration of Contour and Terminator Signals in Visual Area MT of Alert Macaque , 2004, The Journal of Neuroscience.

[326]  Joachim Weickert,et al.  Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods , 2005, International Journal of Computer Vision.

[327]  James R. Anderson,et al.  Retinal connectomics: Towards complete, accurate networks , 2013, Progress in Retinal and Eye Research.

[328]  Terrence J. Sejnowski,et al.  Filter selection model for motion segmentation and velocity integration , 1994 .

[329]  John P. Frisby,et al.  Seeing, Second Edition: The Computational Approach to Biological Vision , 2010 .

[330]  Kameliya Dimova,et al.  A neurally plausible model of the dynamics of motion integration in smooth eye pursuit based on recursive Bayesian estimation , 2009, Biological Cybernetics.

[331]  S. Grossberg,et al.  Pattern formation, contrast control, and oscillations in the short term memory of shunting on-center off-surround networks , 1975, Biological Cybernetics.

[332]  G. Orban,et al.  Spatial heterogeneity of inhibitory surrounds in the middle temporal visual area. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[333]  Alexander C Huk,et al.  Multiplexing in the primate motion pathway , 2012, Vision Research.

[334]  O Braddick,et al.  Local and Global Representations of Velocity: Transparency, Opponency, and Global Direction Perception , 1997, Perception.

[335]  A Gorea,et al.  Directional performances with moving plaids: component-related and plaid-related processing modes coexist. , 1991, Spatial vision.

[336]  D. Ballard,et al.  Modelling the role of task in the control of gaze , 2009, Visual cognition.

[337]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[338]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[339]  Eero P. Simoncelli,et al.  Nonlinear Extraction of Independent Components of Natural Images Using Radial Gaussianization , 2009, Neural Computation.

[340]  Adrienne Fairhall,et al.  The receptive field is dead. Long live the receptive field? , 2014, Current Opinion in Neurobiology.

[341]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[342]  Pierre Kornprobst,et al.  A Neural Field Model for Motion Estimation , 2011 .

[343]  S. Grossberg,et al.  A neural model of motion processing and visual navigation by cortical area MST. , 1999, Cerebral cortex.

[344]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[345]  Xavier Cufí,et al.  Yet Another Survey on Image Segmentation: Region and Boundary Information Integration , 2002, ECCV.

[346]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[347]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[348]  Tatsuo K Sato,et al.  Traveling Waves in Visual Cortex , 2012, Neuron.

[349]  Nikolaus Kriegeskorte,et al.  Deep neural networks: a new framework for modelling biological vision and brain information processing , 2015, bioRxiv.

[350]  Nicholas J. Priebe,et al.  Tuning for Spatiotemporal Frequency and Speed in Directionally Selective Neurons of Macaque Striate Cortex , 2006, The Journal of Neuroscience.

[351]  Guy A Orban,et al.  Higher order visual processing in macaque extrastriate cortex. , 2008, Physiological reviews.

[352]  Peter W. McOwan,et al.  Motion transparency arises from perceptual grouping: evidence from luminance and contrast modulation motion displays , 1996, Current Biology.

[353]  J. D. McCarthy,et al.  Local form–motion interactions influence global form perception , 2012, Attention, perception & psychophysics.

[354]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[355]  Massimiliano Giulioni,et al.  Event-Based Computation of Motion Flow on a Neuromorphic Analog Neural Platform , 2016, Front. Neurosci..

[356]  Pieter R. Roelfsema,et al.  Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation , 2013, Current Biology.

[357]  P. Kornprobst,et al.  The wave of first spikes provides robust spatial cues for retinal information processing , 2014 .

[358]  R. von der Heydt,et al.  Representation of object continuity in the visual cortex. , 2011, Journal of vision.

[359]  Richard H. R. Hahnloser,et al.  On the piecewise analysis of networks of linear threshold neurons , 1998, Neural Networks.

[360]  Heiko Neumann,et al.  Computational Neural Models of Spatial Integration in Perceptual Grouping , 2001 .

[361]  T. Poggio Werner Reichardt: the man and his scientific legacy , 2011 .

[362]  Robert Wanat,et al.  Evaluation of Tone Mapping Operators for HDR-Video , 2013, Comput. Graph. Forum.

[363]  Seunghoon Hong,et al.  Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[364]  Victor A. F. Lamme,et al.  Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. , 1999, Cerebral cortex.

[365]  Sinan Kalkan,et al.  Deep Hierarchies in the Primate Visual Cortex: What Can We Learn for Computer Vision? , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[366]  Tobi Delbrück,et al.  Asynchronous Event-Based Binocular Stereo Matching , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[367]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[368]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[369]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[370]  Stephen Coombes,et al.  Waves, bumps, and patterns in neural field theories , 2005, Biological Cybernetics.

[371]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[372]  Selina S. Solomon,et al.  Texture-dependent motion signals in primate middle temporal area , 2013, The Journal of physiology.

[373]  Stephen Grossberg,et al.  Neural dynamics of motion integration and segmentation within and across apertures , 2001, Vision Research.

[374]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[375]  L. Chalupa,et al.  Organization of Visual Areas in Macaque and Human Cerebral Cortex , 2002 .

[376]  George Azzopardi,et al.  A CORF computational model of a simple cell that relies on LGN input outperforms the Gabor function model , 2012, Biological Cybernetics.

[377]  Shree K. Nayar,et al.  Efficient Space-Time Sampling with Pixel-Wise Coded Exposure for High-Speed Imaging , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[378]  Srinivas C. Turaga,et al.  Space-time wiring specificity supports direction selectivity in the retina , 2014, Nature.

[379]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[380]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[381]  S. Thorpe,et al.  Surfing a spike wave down the ventral stream , 2002, Vision Research.

[382]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[383]  S. Thorpe,et al.  How parallel is visual processing in the ventral pathway? , 2004, Trends in Cognitive Sciences.

[384]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[385]  Hiroshi Yamaguchi,et al.  Evaluating HDR rendering algorithms , 2007, TAP.

[386]  T. Sharpee,et al.  Predictable irregularities in retinal receptive fields , 2009, Proceedings of the National Academy of Sciences.

[387]  Thomas R Clandinin,et al.  Motion-detecting circuits in flies: coming into view. , 2014, Annual review of neuroscience.

[388]  Timothée Masquelier,et al.  Learning to recognize objects using waves of spikes and Spike Timing-Dependent Plasticity , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[389]  Deva Ramanan,et al.  Efficiently Scaling up Crowdsourced Video Annotation , 2012, International Journal of Computer Vision.

[390]  John Rinzel,et al.  Dynamics of Feature Categorization , 2013, Neural Computation.

[391]  Stephen A Baccus,et al.  Insights from the retina into the diverse and general computations of adaptation, detection, and prediction , 2014, Current Opinion in Neurobiology.

[392]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[393]  David D. Cox,et al.  Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures , 2013, ICML.

[394]  G.B. Coleman,et al.  Image segmentation by clustering , 1979, Proceedings of the IEEE.

[395]  A. Yuille,et al.  A model for the estimate of local image velocity by cells in the visual cortex , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[396]  Z. Pylyshyn Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. , 1999, The Behavioral and brain sciences.

[397]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[398]  Christoph von der Malsburg,et al.  The Correlation Theory of Brain Function , 1994 .

[399]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[400]  Simon J. Thorpe,et al.  Coding static natural images using spiking event times: do neurons Cooperate? , 2004, IEEE Transactions on Neural Networks.

[401]  Manuela Chessa,et al.  What can we expect from a V1-MT feedforward architecture for optical flow estimation? , 2015, Signal Process. Image Commun..

[402]  Tirin Moore,et al.  Combined contributions of feedforward and feedback inputs to bottom-up attention , 2015, Front. Psychol..

[403]  Xiaohui Xie,et al.  Selectively Grouping Neurons in Recurrent Networks of Lateral Inhibition , 2002, Neural Computation.

[404]  Jay Hegdé,et al.  Reappraising the Functional Implications of the Primate Visual Anatomical Hierarchy , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[405]  H. Wilson,et al.  A psychophysically motivated model for two-dimensional motion perception , 1992, Visual Neuroscience.

[406]  David C. O'Carroll,et al.  Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology , 2009, PLoS Comput. Biol..

[407]  Brendon O. Watson,et al.  Computing relief structure from motion with a distributed velocity and disparity representation , 2002, Vision Research.

[408]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[409]  Leslie G. Ungerleider,et al.  ‘What’ and ‘where’ in the human brain , 1994, Current Opinion in Neurobiology.

[410]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[411]  G. Granlund In search of a general picture processing operator , 1978 .

[412]  J. Movshon,et al.  Dynamics of motion signaling by neurons in macaque area MT , 2005, Nature Neuroscience.

[413]  J. Hegdé,et al.  A comparative study of shape representation in macaque visual areas v2 and v4. , 2007, Cerebral cortex.

[414]  John G. Daugman,et al.  Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression , 1988, IEEE Trans. Acoust. Speech Signal Process..

[415]  Yiannis Aloimonos,et al.  Active Segmentation , 2009, Int. J. Humanoid Robotics.

[416]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[417]  A. Borst,et al.  Fly motion vision. , 2010, Annual review of neuroscience.

[418]  Gustavo Deco,et al.  Stimulus-dependent variability and noise correlations in cortical MT neurons , 2013, Proceedings of the National Academy of Sciences.

[419]  E. Marg A VISION OF THE BRAIN , 1994 .

[420]  D J Heeger,et al.  Model for the extraction of image flow. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[421]  T. D. Albright,et al.  Transparency and coherence in human motion perception , 1990, Nature.

[422]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[423]  Pieter R. Roelfsema,et al.  Different Processing Phases for Features, Figures, and Selective Attention in the Primary Visual Cortex , 2007, Neuron.

[424]  Michael A. Cohen,et al.  The stability of sustained oscillations in symmetric cooperative competitive networks , 1989, Conference Proceedings., IEEE International Conference on Systems, Man and Cybernetics.

[425]  Carlos R. Ponce,et al.  Temporal evolution of 2-dimensional direction signals used to guide eye movements. , 2005, Journal of neurophysiology.

[426]  J. Gallant,et al.  A Three-Dimensional Spatiotemporal Receptive Field Model Explains Responses of Area MT Neurons to Naturalistic Movies , 2011, The Journal of Neuroscience.

[427]  C. Koch,et al.  The analysis of visual motion: from computational theory to neuronal mechanisms. , 1986, Annual review of neuroscience.

[428]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[429]  David G. Lowe,et al.  Local feature view clustering for 3D object recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[430]  T D Albright,et al.  Visual motion perception. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[431]  I. Ohzawa,et al.  Receptive-field dynamics in the central visual pathways , 1995, Trends in Neurosciences.

[432]  John K. Tsotsos A Computational Perspective on Visual Attention , 2011 .

[433]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[434]  Sidney R. Lehky,et al.  Population Coding and the Labeling Problem: Extrinsic Versus Intrinsic Representations , 2013, Neural Computation.

[435]  Jean Petitot An introduction to the Mumford–Shah segmentation model , 2003, Journal of Physiology-Paris.

[436]  L. Paninski Maximum likelihood estimation of cascade point-process neural encoding models , 2004, Network.

[437]  Junichi Suzuki,et al.  Developing and Applying Biologically-Inspired Vision Systems: Interdisciplinary Concepts , 2012 .

[438]  W. H. Warren Does This Computational Theory Solve the Right Problem? Marr, Gibson, and the Goal of Vision , 2012, Perception.

[439]  Anirvan S. Nandy,et al.  The Fine Structure of Shape Tuning in Area V4 , 2013, Neuron.

[440]  Heiko Neumann,et al.  Combining Feature Selection and Integration—A Neural Model for MT Motion Selectivity , 2011, PloS one.

[441]  Pierre Kornprobst,et al.  Neural Mechanisms of Motion Detection, Integration, and Segregation: From Biology to Artificial Image Processing Systems , 2011, EURASIP J. Adv. Signal Process..

[442]  Heiko Neumann,et al.  Interactions of motion and form in visual cortex – A neural model , 2008, Journal of Physiology-Paris.

[443]  Stephen Grossberg,et al.  A solution of the figure-ground problem for biological vision , 1993, Neural Networks.

[444]  Kamiar Rahnama Rad,et al.  Information Rates and Optimal Decoding in Large Neural Populations , 2011, NIPS.

[445]  Tobias Brosch,et al.  Interaction of feedforward and feedback streams in visual cortex in a firing-rate model of columnar computations , 2014, Neural Networks.

[446]  Oliver W. Layton,et al.  A Unified Model of Heading and Path Perception in Primate MSTd , 2014, PLoS Comput. Biol..

[447]  Nitish V. Thakor,et al.  HFirst: A Temporal Approach to Object Recognition , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[448]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[449]  Wolf Singer,et al.  Neuronal Synchrony: A Versatile Code for the Definition of Relations? , 1999, Neuron.

[450]  Wallace B. Thoreson,et al.  Lateral interactions in the outer retina , 2012, Progress in Retinal and Eye Research.

[451]  Randolph Blake,et al.  Long-range traveling waves of activity triggered by local dichoptic stimulation in V1 of behaving monkeys. , 2015, Journal of neurophysiology.