A Boundary Value Problem for a Class of Anisotropic Stochastic Degenerate Parabolic-Hyperbolic Equations
暂无分享,去创建一个
Hermano Frid | Daniel R. Marroquin | Yachun Li | Daniel Marroquin | Joao F.C. Nariyoshi | Zirong Zeng | Joao F. C. Nariyoshi | H. Frid | Zirong Zeng | Yachun Li
[1] Gui-Qiang G. Chen,et al. Well-posedness for non-isotropic degenerate parabolic-hyperbolic equations , 2003 .
[2] Katsushi Ikeuchi,et al. Stochastic Differential Equations in Infinite Dimensions , 2014, Computer Vision, A Reference Guide.
[3] I. Gyöngy,et al. Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .
[4] Guy Vallet,et al. A degenerate parabolic–hyperbolic Cauchy problem with a stochastic force , 2015 .
[5] Kenneth Hvistendahl Karlsen,et al. On stochastic conservation laws and Malliavin calculus , 2015, 1507.05518.
[6] Hermano Frid,et al. On the theory of divergence-measure fields and its applications , 2001 .
[7] L. Tubaro,et al. An estimate of Burkholder type for stochastic processes defined by the stochastic integral , 1984 .
[8] Leszek Gawarecki,et al. Stochastic Differential Equations in Infinite Dimensions , 2011 .
[9] Tsuyoshi Murata,et al. {m , 1934, ACML.
[10] M. Hofmanová. Degenerate parabolic stochastic partial differential equations , 2013 .
[11] On stochastic partial differential equations with polynomial nonlinearities , 1999 .
[12] M. Beiglböck,et al. A short proof of the Doob–Meyer theorem , 2010, Stochastic processes and their applications.
[13] Divergence-Measure Fields on Domains with Lipschitz Boundary , 2014 .
[14] M. Reed. Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .
[15] Hermano Frid,et al. Extended Divergence-Measure Fields and the Euler Equations for Gas Dynamics , 2003 .
[16] The strong trace property and the Neumann problem for stochastic conservation laws , 2021, Stochastics and Partial Differential Equations: Analysis and Computations.
[17] Gui-Qiang G. Chen,et al. On Nonlinear Stochastic Balance Laws , 2011, 1111.5217.
[18] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .
[19] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[20] D. Lieberman,et al. Fourier analysis , 2004, Journal of cataract and refractive surgery.
[21] Jöran Bergh,et al. Interpolation Spaces: An Introduction , 2011 .
[22] P. Kotelenez. A stopped Doob inequality for stochastic convolution integrals and stochastic evolution equations , 1984 .
[23] R. Cooke. Real and Complex Analysis , 2011 .
[24] Jessika Eichel,et al. Partial Differential Equations Second Edition , 2016 .
[25] Arnaud Debussche,et al. Degenerate parabolic stochastic partial differential equations: Quasilinear case , 2013, 1309.5817.
[26] Gui-Qiang G. Chen,et al. Large-time behavior of periodic entropy solutions to anisotropic degenerate parabolic-hyperbolic equations , 2008, 0810.2862.
[27] Martin Ondreját,et al. Uniqueness for stochastic evolution equations in Banach spaces , 2004 .
[28] L. Evans. Measure theory and fine properties of functions , 1992 .
[29] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[30] Xiongzhi Chen. Brownian Motion and Stochastic Calculus , 2008 .
[31] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[32] A. Debussche,et al. Scalar conservation laws with stochastic forcing , 2010, 1001.5415.
[33] Hermano Frid,et al. Divergence‐Measure Fields and Hyperbolic Conservation Laws , 1999 .
[34] Guy Vallet,et al. THE CAUCHY PROBLEM FOR CONSERVATION LAWS WITH A MULTIPLICATIVE STOCHASTIC PERTURBATION , 2012 .
[35] Friedrich Sauvigny,et al. Linear Operators in Hilbert Spaces , 2012 .
[36] M. Šilhavý. The Divergence Theorem for Divergence Measure Vectorfields on Sets with Fractal Boundaries , 2009 .
[37] E. Yu. Panov,et al. EXISTENCE OF STRONG TRACES FOR QUASI-SOLUTIONS OF MULTIDIMENSIONAL CONSERVATION LAWS , 2007 .
[38] Corrado Mascia,et al. Nonhomogeneous Dirichlet Problems for Degenerate Parabolic-Hyperbolic Equations , 2002 .
[39] Eitan Tadmor,et al. Velocity averaging, kinetic formulations, and regularizing effects in quasi‐linear PDEs , 2007 .
[40] P. Kotelenez. A submartingale type inequality with applicatinos to stochastic evolution equations , 1982 .
[41] B. Davis,et al. Integral Inequalities for Convex Functions of Operators on Martingales , 2011 .
[42] O. A. Ladyzhenskai︠a︡,et al. Linear and Quasi-linear Equations of Parabolic Type , 1995 .
[43] Alexis Vasseur,et al. Strong Traces for Solutions of Multidimensional Scalar Conservation Laws , 2001 .
[44] M. Röckner,et al. A Concise Course on Stochastic Partial Differential Equations , 2007 .
[45] D. Nualart,et al. Stochastic scalar conservation laws , 2008 .
[46] L. Ambrosio,et al. Functions of Bounded Variation and Free Discontinuity Problems , 2000 .
[47] B. Perthame,et al. A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .
[48] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[49] R. Kadison,et al. Fundamentals of the Theory of Operator Algebras , 1983 .
[50] 장윤희,et al. Y. , 2003, Industrial and Labor Relations Terms.
[51] J. Norris. Appendix: probability and measure , 1997 .
[52] Doctoral Thesis,et al. Instituto de Matematica Pura e Aplicada , 2009 .
[53] Guy Vallet,et al. ON A STOCHASTIC FIRST-ORDER HYPERBOLIC EQUATION IN A BOUNDED DOMAIN , 2009 .
[54] A. Davie. Uniqueness of solutions of stochastic differential equations , 2007, 0709.4147.