Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity

[1]  Jessica A. Faust,et al.  Imaging Spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) , 1998 .

[2]  B. Rock,et al.  Detection of changes in leaf water content using Near- and Middle-Infrared reflectances , 1989 .

[3]  Stephen R. Yool,et al.  Mapping Fire-Induced Vegetation Mortality Using Landsat Thematic Mapper Data: A Comparison of Linear Transformation Techniques , 1998 .

[4]  V. Jayaraman,et al.  The invariance of red-edge inflection wavelengths derived from ground based spectro-radiometer and space-borne IRS-P3: MOS-B data , 2002 .

[5]  F. Lloret,et al.  Influence of fire severity on plant regeneration by means of remote sensing imagery , 2003 .

[6]  David L. Verbyla,et al.  Effect of scan angle on AVHRR fire detection accuracy in interior Alaska , 1999 .

[7]  M. Karteris,et al.  Burnt land mapping at local scale , 1999 .

[8]  J. Moreno,et al.  Methods for quantifying fire severity in shrubland-fires , 1998, Plant Ecology.

[9]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[10]  Josef Cihlar,et al.  Satellite-based mapping of Canadian boreal forest fires: Evaluation and comparison of algorithms , 2000 .

[11]  P. Curran,et al.  A new technique for interpolating the reflectance red edge position , 1998 .

[12]  Bo-Cai Gao,et al.  Normalized difference water index for remote sensing of vegetation liquid water from space , 1995, Defense, Security, and Sensing.

[13]  F. Siegert,et al.  Use of multitemporal ERS-2 SAR images for identification of burned scars in south-east Asian tropical rainforest , 2000 .

[14]  Emilio Chuvieco,et al.  Measuring changes in landscape pattern from satellite images: Short-term effects of fire on spatial diversity , 1999 .

[15]  E. Kasischke,et al.  Locating and estimating the areal extent of wildfires in alaskan boreal forests using multiple-season AVHRR NDVI composite data , 1995 .

[16]  Jay D. Miller,et al.  Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data , 2002 .

[17]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[18]  W. Ripple,et al.  Assessing wildfire effects with Landsat thematic mapper data , 1998 .

[19]  C. Hlavka,et al.  Mapping Fire Scars in the Brazilian Cerrado Using AVHRR Imagery , 1995 .

[20]  N. Benson,et al.  Landscape Assessment: Ground measure of severity, the Composite Burn Index; and Remote sensing of severity, the Normalized Burn Ratio , 2006 .

[21]  Emilio Chuvieco,et al.  Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains , 2002 .

[22]  H. Eva,et al.  Burnt area mapping in Central Africa using ATSR data , 1998 .

[23]  B. Gao NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space , 1996 .

[24]  C. Justice,et al.  The quantity of biomass burned in southern Africa , 1996 .

[25]  R. Colwell Remote sensing of the environment , 1980, Nature.

[26]  C. Elvidge Visible and near infrared reflectance characteristics of dry plant materials , 1990 .

[27]  Eric S. Kasischke,et al.  Mapping fire scars in global boreal forests using imaging radar data , 2002 .

[28]  S. Running,et al.  Remote Sensing of Forest Fire Severity and Vegetation Recovery , 1996 .

[29]  J. L. Barker,et al.  Landsat MSS and TM post-calibration dynamic ranges , 1986 .

[30]  J. Wagtendonk,et al.  The use of geographic information for fire management planning in Yosemite National Park , 2002 .

[31]  T. M. Lillesand,et al.  Remote sensing and image interpretation. Second edition , 1987 .

[32]  E. Salinero Remote sensing of large wildfires in the European Mediterranean Basin , 1999 .

[33]  J. Pereira,et al.  Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia , 2002 .