Hamiltonicity of edge chromatic critical graphs

Given a graph $G$, denote by $\Delta$ and $\chi^\prime$ the maximum degree and the chromatic index of $G$, respectively. A simple graph $G$ is called {\it edge-$\Delta$-critical} if $\chi^\prime(G)=\Delta+1$ and $\chi^\prime(H)\le\Delta$ for every proper subgraph $H$ of $G$. We proved that every edge chromatic critical graph of order $n$ with maximum degree at least $\frac{2n}{3}+12$ is Hamiltonian.

[1]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[2]  Akira Saito,et al.  Spanning Trails with Maximum Degree at Most 4 in $$2K_2$$2K2-Free Graphs , 2017, Graphs Comb..

[3]  G. Chartrand,et al.  Edge Colorings of Graphs , 2008 .

[4]  V. G. Vizing SOME UNSOLVED PROBLEMS IN GRAPH THEORY , 1968 .

[5]  Guantao Chen,et al.  Vizing's 2-Factor Conjecture Involving Large Maximum Degree , 2017, J. Graph Theory.

[6]  V. G. Vizing The chromatic class of a multigraph , 1965 .

[7]  S. Fiorini,et al.  Some remarks on a paper by Vizing on critical graphs , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Rong Luo,et al.  Hamiltonian Cycles in Critical Graphs with Large Maximum Degree , 2016, Graphs Comb..

[9]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[10]  Yue Zhao,et al.  A note on Vizing's independence number conjecture of edge chromatic critical graphs , 2006, Discret. Math..

[11]  Limin Zhang,et al.  Every Planar Graph with Maximum Degree 7 Is of Class 1 , 2000, Graphs Comb..

[12]  Douglas R. Woodall,et al.  The average degree of an edge-chromatic critical graph II , 2007 .

[13]  H. Veldman,et al.  Degree sums for edges and cycle lengths in graphs , 1997 .

[14]  Michael Stiebitz,et al.  Graph Edge Coloring: Vizing's Theorem and Goldberg's Conjecture , 2012 .

[15]  Rong Luo,et al.  A Sufficient Condition for Edge Chromatic Critical Graphs to Be Hamiltonian—An Approach to Vizing's 2‐Factor Conjecture , 2013, J. Graph Theory.

[16]  Hal A. Kierstead,et al.  On the chromatic index of multigraphs without large triangles , 1984, J. Comb. Theory, Ser. B.

[17]  Eckhard Steffen,et al.  Independent sets and 2-factors in edge-chromatic-critical graphs , 2004, J. Graph Theory.

[18]  Douglas R. Woodall,et al.  The average degree of an edge-chromatic critical graph , 2008, Discret. Math..

[19]  John Adrian Bondy,et al.  A method in graph theory , 1976, Discret. Math..

[20]  Takao Nishizeki,et al.  An algorithm for edge-coloring of multigraphs , 1984 .

[21]  A. Hilton,et al.  Star multigraphs with three vertices of maximum degree , 1986 .