Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information
暂无分享,去创建一个
Christine Fernandez-Maloigne | Anne-Sophie Capelle-Laizé | Olivier Colot | O. Colot | C. Fernandez-Maloigne | A. Capelle-Laizé
[1] Thierry Denoeux,et al. Analysis of evidence-theoretic decision rules for pattern classification , 1997, Pattern Recognit..
[2] R. Yager. On the dempster-shafer framework and new combination rules , 1987, Inf. Sci..
[3] Thierry Denoeux,et al. An evidence-theoretic k-NN rule with parameter optimization , 1998, IEEE Trans. Syst. Man Cybern. Part C.
[4] Isabelle Bloch,et al. Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account , 1996, Pattern Recognit. Lett..
[5] Frans Voorbraak,et al. On the Justification of Dempster's Rule of Combination , 1988, Artif. Intell..
[6] Amihai Motro,et al. Uncertainty Management in Information Systems: From Needs to Solution , 1996 .
[7] Philippe Smets,et al. Resolving misunderstandings about belief functions , 1992, Int. J. Approx. Reason..
[8] Peter Walley,et al. Belief Function Representations of Statistical Evidence , 1987 .
[9] C. K. Chow,et al. On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.
[10] Alessandro Saffiotti,et al. The Transferable Belief Model , 1991, ECSQARU.
[11] Philippe Smets,et al. Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..
[12] Thierry Denoeux. An evidence-theoretic neural network classifier , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.
[13] Henri Prade,et al. Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..
[14] Lotfi A. Zadeh,et al. On the Validity of Dempster''s Rule of Combination of Evidence , 1979 .
[15] R P Velthuizen,et al. MRI: stability of three supervised segmentation techniques. , 1993, Magnetic resonance imaging.
[16] A. Fenster,et al. Computer‐assisted identification and quantification of multiple sclerosis lesions in MR imaging volumes in the brain , 1994, Journal of magnetic resonance imaging : JMRI.
[17] Robert Kennes,et al. Computational aspects of the Mobius transformation of graphs , 1992, IEEE Trans. Syst. Man Cybern..
[18] E. Lefèvre,et al. 1 - Contribution des mesures d'information à la modélisation crédibiliste de connaissances , 2000 .
[19] Thierry Denoeux,et al. Likelihood-based vs. distance-based evidential classifiers , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).
[20] Christophe Collet,et al. 1 - Classification de textures en imagerie sonar et invariance en rotation , 2000 .
[21] Bernard Dubuisson,et al. A statistical decision rule with incomplete knowledge about classes , 1993, Pattern Recognit..
[22] Philippe Smets,et al. What is Dempster-Shafer's model? , 1994 .
[23] Philippe Smets,et al. Practical Uses of Belief Functions , 1999, UAI.
[24] Eric Lefevre,et al. Belief function combination and conflict management , 2002, Inf. Fusion.
[25] R. M. Mersereau,et al. Automatic boundary detection on cardiac magnetic resonance image sequences for four dimensional visualization of the left ventricle , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.
[26] Paul Checchin,et al. Application de la théorie de l'évidence à la combinaison de segmentations en régions , 1999 .
[27] Guido Gerig,et al. Unsupervised tissue type segmentation of 3D dual-echo MR head data , 1992, Image Vis. Comput..
[28] Bloch. 1 - Incertitude, imprécision et additivité en fusion de données : point de vue historique , 1996 .
[29] Richard M. Leahy,et al. Multispectral tissue classification of MR images using sensor fusion approaches , 1990, Medical Imaging: Image Processing.
[30] Philippe Smets,et al. Constructing the Pignistic Probability Function in a Context of Uncertainty , 1989, UAI.
[31] Chin-Tu Chen,et al. Evidential reasoning based on Dempster-Shafer theory and its application to medical image analysis , 1993, Optics & Photonics.
[32] Olivier Alata,et al. Unsupervised segmentation for automatic detection of brain tumors in MRI , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).
[33] Philippe Smets,et al. The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[34] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[35] Rudolf Kruse,et al. The Transferable Belief Model for Belief Representation , 1996, Uncertainty Management in Information Systems.
[36] Thierry Denoeux,et al. A neural network classifier based on Dempster-Shafer theory , 2000, IEEE Trans. Syst. Man Cybern. Part A.
[37] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[38] Didier Dubois,et al. On the unicity of dempster rule of combination , 1986, Int. J. Intell. Syst..