Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information

In this paper we propose and study an evidential segmentation scheme of multi-echo MR images for the detection of brain tumors. We show that the modeling by means of evidence theory is well suited to the processing of redundant and complementary data as the MR images. Moreover neighborhood relationship between voxels is taken into account via Dempster's combination rule. We show that using this information improves the classification results previously obtained and leads to a real region-based segmentation. Moreover, the combination of spatial information allows to compute a measure of conflict, which reflects the spatial organization of the data: the conflict is higher at the boundaries between different structures. Thus, it provides a new source of evidence that the specialist can aggregate with the segmentation results to soften its own decision.

[1]  Thierry Denoeux,et al.  Analysis of evidence-theoretic decision rules for pattern classification , 1997, Pattern Recognit..

[2]  R. Yager On the dempster-shafer framework and new combination rules , 1987, Inf. Sci..

[3]  Thierry Denoeux,et al.  An evidence-theoretic k-NN rule with parameter optimization , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[4]  Isabelle Bloch,et al.  Some aspects of Dempster-Shafer evidence theory for classification of multi-modality medical images taking partial volume effect into account , 1996, Pattern Recognit. Lett..

[5]  Frans Voorbraak,et al.  On the Justification of Dempster's Rule of Combination , 1988, Artif. Intell..

[6]  Amihai Motro,et al.  Uncertainty Management in Information Systems: From Needs to Solution , 1996 .

[7]  Philippe Smets,et al.  Resolving misunderstandings about belief functions , 1992, Int. J. Approx. Reason..

[8]  Peter Walley,et al.  Belief Function Representations of Statistical Evidence , 1987 .

[9]  C. K. Chow,et al.  On optimum recognition error and reject tradeoff , 1970, IEEE Trans. Inf. Theory.

[10]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[11]  Philippe Smets,et al.  Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem , 1993, Int. J. Approx. Reason..

[12]  Thierry Denoeux An evidence-theoretic neural network classifier , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[13]  Henri Prade,et al.  Representation and combination of uncertainty with belief functions and possibility measures , 1988, Comput. Intell..

[14]  Lotfi A. Zadeh,et al.  On the Validity of Dempster''s Rule of Combination of Evidence , 1979 .

[15]  R P Velthuizen,et al.  MRI: stability of three supervised segmentation techniques. , 1993, Magnetic resonance imaging.

[16]  A. Fenster,et al.  Computer‐assisted identification and quantification of multiple sclerosis lesions in MR imaging volumes in the brain , 1994, Journal of magnetic resonance imaging : JMRI.

[17]  Robert Kennes,et al.  Computational aspects of the Mobius transformation of graphs , 1992, IEEE Trans. Syst. Man Cybern..

[18]  E. Lefèvre,et al.  1 - Contribution des mesures d'information à la modélisation crédibiliste de connaissances , 2000 .

[19]  Thierry Denoeux,et al.  Likelihood-based vs. distance-based evidential classifiers , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[20]  Christophe Collet,et al.  1 - Classification de textures en imagerie sonar et invariance en rotation , 2000 .

[21]  Bernard Dubuisson,et al.  A statistical decision rule with incomplete knowledge about classes , 1993, Pattern Recognit..

[22]  Philippe Smets,et al.  What is Dempster-Shafer's model? , 1994 .

[23]  Philippe Smets,et al.  Practical Uses of Belief Functions , 1999, UAI.

[24]  Eric Lefevre,et al.  Belief function combination and conflict management , 2002, Inf. Fusion.

[25]  R. M. Mersereau,et al.  Automatic boundary detection on cardiac magnetic resonance image sequences for four dimensional visualization of the left ventricle , 1990, [1990] Proceedings of the First Conference on Visualization in Biomedical Computing.

[26]  Paul Checchin,et al.  Application de la théorie de l'évidence à la combinaison de segmentations en régions , 1999 .

[27]  Guido Gerig,et al.  Unsupervised tissue type segmentation of 3D dual-echo MR head data , 1992, Image Vis. Comput..

[28]  Bloch 1 - Incertitude, imprécision et additivité en fusion de données : point de vue historique , 1996 .

[29]  Richard M. Leahy,et al.  Multispectral tissue classification of MR images using sensor fusion approaches , 1990, Medical Imaging: Image Processing.

[30]  Philippe Smets,et al.  Constructing the Pignistic Probability Function in a Context of Uncertainty , 1989, UAI.

[31]  Chin-Tu Chen,et al.  Evidential reasoning based on Dempster-Shafer theory and its application to medical image analysis , 1993, Optics & Photonics.

[32]  Olivier Alata,et al.  Unsupervised segmentation for automatic detection of brain tumors in MRI , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[33]  Philippe Smets,et al.  The Combination of Evidence in the Transferable Belief Model , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[35]  Rudolf Kruse,et al.  The Transferable Belief Model for Belief Representation , 1996, Uncertainty Management in Information Systems.

[36]  Thierry Denoeux,et al.  A neural network classifier based on Dempster-Shafer theory , 2000, IEEE Trans. Syst. Man Cybern. Part A.

[37]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[38]  Didier Dubois,et al.  On the unicity of dempster rule of combination , 1986, Int. J. Intell. Syst..