Pedestrian detection at 100 frames per second

We present a new pedestrian detector that improves both in speed and quality over state-of-the-art. By efficiently handling different scales and transferring computation from test time to training time, detection speed is improved. When processing monocular images, our system provides high quality detections at 50 fps. We also propose a new method for exploiting geometric context extracted from stereo images. On a single CPU+GPU desktop machine, we reach 135 fps, when processing street scenes, from rectified input to detections output.

[1]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Bastian Leibe,et al.  Efficient Use of Geometric Constraints for Sliding-Window Object Detection in Video , 2011, ICVS.

[3]  Jordi Gonzàlez,et al.  A coarse-to-fine approach for fast deformable object detection , 2011, CVPR 2011.

[4]  C. V. Jawahar,et al.  Generalized RBF feature maps for Efficient Detection , 2010, BMVC.

[5]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  David A. McAllester,et al.  Cascade object detection with deformable part models , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Luc Van Gool,et al.  Stixels estimation without depth map computation , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[9]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[10]  Shane Brennan,et al.  A Fast Stereo-based System for Detecting and Tracking Pedestrians from a Moving Vehicle , 2009, Int. J. Robotics Res..

[11]  Cordelia Schmid,et al.  Human Detection Using Oriented Histograms of Flow and Appearance , 2006, ECCV.

[12]  Christoph H. Lampert,et al.  Beyond sliding windows: Object localization by efficient subwindow search , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Luc Van Gool,et al.  Branch&Rank: Non-Linear Object Detection , 2011, BMVC.

[14]  Charless C. Fowlkes,et al.  Multiresolution Models for Object Detection , 2010, ECCV.

[15]  Andreas Ess,et al.  Visual urban scene analysis by moving platforms , 2009 .

[16]  Pietro Perona,et al.  The Fastest Pedestrian Detector in the West , 2010, BMVC.

[17]  Dariu Gavrila,et al.  Dense Stereo-Based ROI Generation for Pedestrian Detection , 2009, DAGM-Symposium.

[18]  Paul A. Viola,et al.  Multiple-Instance Pruning For Learning Efficient Cascade Detectors , 2007, NIPS.

[19]  Pietro Perona,et al.  Integral Channel Features , 2009, BMVC.

[20]  Uwe Franke,et al.  The Stixel World - A Compact Medium Level Representation of the 3D-World , 2009, DAGM-Symposium.