Topology optimization of heat conduction problems using the finite volume method

This note addresses the use of the finite volume method (FVM) for topology optimization of a heat conduction problem. Issues pertaining to the proper choice of cost functions, sensitivity analysis, and example test problems are used to illustrate the effect of applying the FVM as an analysis tool for design optimization. This involves an application of the FVM to problems with nonhomogeneous material distributions, and the arithmetic and harmonic averages have here been used to provide a unique value for the conductivity at element boundaries. It is observed that when using the harmonic average, checkerboards do not form during the topology optimization process.

[1]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[2]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[3]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[4]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[5]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[6]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[7]  Salvatore Torquato,et al.  Effective mechanical and transport properties of cellular solids , 1998 .

[8]  Adrian Bejan,et al.  Streets tree networks and urban growth: Optimal geometry for quickest access between a finite-size volume and one point , 1998 .

[9]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[10]  A. Bejan Shape and Structure, from Engineering to Nature , 2000 .

[11]  Ole Sigmund,et al.  Design of multiphysics actuators using topology optimization - Part I: One-material structures , 2001 .

[12]  Jan A. Snyman,et al.  Minimizing the effect of automotive pollution in urban geometry using mathematical optimization , 2001 .

[13]  K. Svanberg,et al.  An alternative interpolation scheme for minimum compliance topology optimization , 2001 .

[14]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[15]  Arthur Rizzi,et al.  Navier–Stokes solvers in European aircraft design , 2002 .

[16]  Krister Svanberg,et al.  A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations , 2002, SIAM J. Optim..

[17]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[18]  Andre Benard,et al.  Topology Optimization of Heat-Resistant Structures , 2003, DAC 2003.

[19]  Ole Sigmund,et al.  Topology optimization for multiphysics problems: A future FEMLAB application? , 2003 .

[20]  Anders Klarbring,et al.  Topology optimization of flow networks , 2003 .

[21]  P. Schonfeld,et al.  An evolutionary model for simultaneously optimizing three-dimensional highway alignments , 2003 .

[22]  Niels Leergaard Pedersen,et al.  On optimization of bio‐probes , 2004 .

[23]  Qing Li,et al.  Evolutionary topology optimization for temperature reduction of heat conducting fields , 2004 .

[24]  Paul Schonfeld,et al.  A highway alignment optimization model using geographic information systems , 2004 .

[25]  John J. Bartholdi,et al.  The Best Shape for a Crossdock , 2004, Transp. Sci..

[26]  Abderrahmane Habbal,et al.  Multidisciplinary topology optimization solved as a Nash game , 2004 .

[27]  T. Barth,et al.  Finite Volume Methods: Foundation and Analysis , 2004 .

[28]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[29]  O. Pironneau,et al.  SHAPE OPTIMIZATION IN FLUID MECHANICS , 2004 .

[30]  Ph. Guillaume,et al.  Topological Sensitivity and Shape Optimization for the Stokes Equations , 2004, SIAM J. Control. Optim..

[31]  Patrick Jenny,et al.  Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media , 2005, Multiscale Model. Simul..

[32]  Kyung K. Choi,et al.  Structural sensitivity analysis and optimization , 2005 .

[33]  R. Haftka,et al.  Review of options for structural design sensitivity analysis. Part 1: Linear systems , 2005 .

[34]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[35]  O. Sigmund,et al.  Topology optimization using the finite volume method , 2005 .

[36]  L. H. Olesen,et al.  A high‐level programming‐language implementation of topology optimization applied to steady‐state Navier–Stokes flow , 2004, physics/0410086.

[37]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.