Usability Impact of Occlusion-free Techniques on Commonly-used Multitouch Actions

Many interaction techniques have been proposed to combat the finger occlusion and precision problem in multitouch platforms such as tablets and smartphones, supporting more accurate ways to select a target item with a finger. Recognising how the typical touch interactions on multitouch platforms are becoming more complex and composite, in this paper we study some combinations of basic occlusion-free/precision finger interaction techniques in the context of commonly-used composite user actions in realistic usage scenarios including copying and pasting a portion of text and drawing a curved line. We develop full-fledged tablet applications featuring the techniques to assess their usability impact on the rest of the actions. Usability testing with 25 participants qualitatively reveals how the integration of these techniques is useful for their intended part (i.e. accurate targeting) but negatively influence the remaining parts of the action. Insights from the study and areas that will benefit further investigation are discussed.

[1]  Patrick Baudisch,et al.  Snap-and-go: helping users align objects without the modality of traditional snapping , 2005, CHI.

[2]  Raimund Dachselt,et al.  Revisiting hovering: interaction guides for interactive surfaces , 2012, ITS.

[3]  Ben Shneiderman,et al.  High Precision Touchscreens: Design Strategies and Comparisons with a Mouse , 1991, Int. J. Man Mach. Stud..

[4]  Xiang Cao,et al.  Detecting and leveraging finger orientation for interaction with direct-touch surfaces , 2009, UIST '09.

[5]  Meredith Ringel Morris,et al.  ShadowGuides: visualizations for in-situ learning of multi-touch and whole-hand gestures , 2009, ITS '09.

[6]  Tovi Grossman,et al.  The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor's activation area , 2005, CHI.

[7]  Edward Lank,et al.  Modeling User Performance on Curved Constrained Paths , 2017, CHI.

[8]  Christopher M. Schlick,et al.  Evaluating swabbing: a touchscreen input method for elderly users with tremor , 2011, CHI.

[9]  Patrick Baudisch,et al.  The springboard: multiple modes in one spring-loaded control , 2006, CHI.

[10]  Patrick Baudisch,et al.  Back-of-device interaction allows creating very small touch devices , 2009, CHI.

[11]  Daniel Vogel,et al.  HybridPointing: fluid switching between absolute and relative pointing with a direct input device , 2006, UIST.

[12]  Mark W. Newman,et al.  Escape: a target selection technique using visually-cued gestures , 2008, CHI.

[13]  Daniel J. Wigdor,et al.  Direct-touch vs. mouse input for tabletop displays , 2007, CHI.

[14]  Wolfgang Stuerzlinger,et al.  Easy vs. Tricky: The Shape Effect in Tracing, Selecting, and Steering With Mouse, Stylus, and Touch , 2013, MindTrek.

[15]  Petri Vuorimaa,et al.  TouchModifier: enriched multi-touch gestures for tablet browsers , 2013, ITS.

[16]  Daniel Vogel,et al.  Direct Pen Interaction With a Conventional Graphical User Interface , 2010, Hum. Comput. Interact..

[17]  Benjamin B. Bederson,et al.  Direct Versus Indirect Input Methods for One-Handed Touchscreen Mobile Computing , 2007 .

[18]  Dongsong Zhang,et al.  ExtendedThumb: a motion-based virtual thumb for improving one-handed target acquisition on touch-screen mobile devices , 2014, CHI Extended Abstracts.

[19]  William Buxton,et al.  A three-state model of graphical input , 1990, INTERACT.

[20]  Hemant Bhaskar Surale,et al.  Experimental Analysis of Mode Switching Techniques in Touch-based User Interfaces , 2017, CHI.

[21]  Daniel Vogel,et al.  The Performance and Preference of Different Fingers and Chords for Pointing, Dragging, and Object Transformation , 2016, CHI.

[22]  Geehyuk Lee,et al.  Interaction techniques for unreachable objects on the touchscreen , 2012, OZCHI.

[23]  Joaquim A. Jorge,et al.  Towards accessible touch interfaces , 2010, ASSETS '10.

[24]  Fabrice Matulic,et al.  Pen and touch gestural environment for document editing on interactive tabletops , 2013, ITS.

[25]  Maneesh Agrawala,et al.  FingerGlass: efficient multiscale interaction on multitouch screens , 2011, CHI.

[26]  Geehyuk Lee,et al.  Push-push: a two-point touchscreen operation utilizing the pressed state and the hover state , 2014, UIST'14 Adjunct.

[27]  Clifton Forlines,et al.  Glimpse: a novel input model for multi-level devices , 2005, CHI EA '05.

[28]  Mark S. Hancock,et al.  Improving Menu Placement Strategies for Pen Input , 2004, Graphics Interface.

[29]  Carl Gutwin,et al.  HandMark Menus: Rapid Command Selection and Large Command Sets on Multi-Touch Displays , 2016, CHI.

[30]  Pourang Irani,et al.  ARC-Pad: absolute+relative cursor positioning for large displays with a mobile touchscreen , 2009, UIST '09.

[31]  Shumin Zhai,et al.  High precision touch screen interaction , 2003, CHI '03.

[32]  Carl Gutwin,et al.  Improving Discoverability and Expert Performance in Force-Sensitive Text Selection for Touch Devices with Mode Gauges , 2018, CHI.

[33]  Kenton O'Hara,et al.  Pre-Touch Sensing for Mobile Interaction , 2016, CHI.

[34]  T. K. Philip Hwang,et al.  Virtual Touchpad for Cursor Control of Touchscreen Thumb Operation in the Mobile Context , 2015, HCI.

[35]  Tovi Grossman,et al.  The design and evaluation of multi-finger mouse emulation techniques , 2009, CHI.

[36]  Andruid Kerne,et al.  High-performance pen + touch modality interactions: a real-time strategy game eSports context , 2012, UIST.

[37]  Patrick Baudisch,et al.  Precise selection techniques for multi-touch screens , 2006, CHI.

[38]  William Buxton,et al.  Thumb + Pen Interaction on Tablets , 2017, CHI.

[39]  Daniel Vogel,et al.  Shift: a technique for operating pen-based interfaces using touch , 2007, CHI.

[40]  David Lee,et al.  PhantomPen: virtualization of pen head for digital drawing free from pen occlusion & visual parallax , 2012, UIST '12.

[41]  Patrick Baudisch,et al.  Lucid touch: a see-through mobile device , 2007, UIST.

[42]  Stéphane Huot,et al.  TapTap and MagStick: improving one-handed target acquisition on small touch-screens , 2008, AVI '08.

[43]  Anna Ostberg,et al.  Hover Cursor: Improving Touchscreen Acquisition Of Small Targets With Hover-enabled Pre-selection , 2015, CHI Extended Abstracts.

[44]  Steven K. Feiner,et al.  Rubbing and tapping for precise and rapid selection on touch-screen displays , 2008, CHI.

[45]  Daniel Vogel,et al.  Occlusion-aware interfaces , 2010, CHI.

[46]  Michel Beaudouin-Lafon,et al.  SPad: a bimanual interaction technique for productivity applications on multi-touch tablets , 2014, CHI Extended Abstracts.

[47]  Niels Henze,et al.  Comparing pointing techniques for grasping hands on tablets , 2014, MobileHCI '14.

[48]  B. Shneiderman,et al.  Improving the accuracy of touch screens: an experimental evaluation of three strategies , 1988, CHI '88.

[49]  Rynson W. H. Lau,et al.  LinearDragger: a linear selector for one-finger target acquisition , 2014, CHI Extended Abstracts.

[50]  Chunxiao Li,et al.  Augmenting User-Maintained Interaction Through Mode Locking and Reversing , 2018 .

[51]  Carl Gutwin,et al.  Faster command selection on tablets with FastTap , 2014, CHI.

[52]  Daniel J. Wigdor,et al.  Imprecision, Inaccuracy, and Frustration: The Tale of Touch Input , 2010, Tabletops.

[53]  Daniel Vogel,et al.  Clutching Is Not (Necessarily) the Enemy , 2015, CHI.

[54]  Renaud Blanch,et al.  Semantic pointing: improving target acquisition with control-display ratio adaptation , 2004, CHI.