The logic of TGFβ signaling

[1]  Roger R. Gomis,et al.  C/EBPβ at the core of the TGFβ cytostatic response and its evasion in metastatic breast cancer cells , 2006 .

[2]  A. Brivanlou,et al.  Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling , 2006, Proceedings of the National Academy of Sciences.

[3]  Wei He,et al.  Hematopoiesis Controlled by Distinct TIF1γ and Smad4 Branches of the TGFβ Pathway , 2006, Cell.

[4]  Y. Ip,et al.  Identification of phosphatases for Smad in the BMP/DPP pathway. , 2006, Genes & development.

[5]  J. Massagué,et al.  Smad transcription factors. , 2005, Genes & development.

[6]  J. Massagué,et al.  TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. , 2005, Cancer cell.

[7]  R. Derynck,et al.  SPECIFICITY AND VERSATILITY IN TGF-β SIGNALING THROUGH SMADS , 2005 .

[8]  Wei He,et al.  Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Wrana,et al.  Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. , 2005, Molecular cell.

[10]  Jonathan G. Rud,et al.  Nuclear Targeting of Transforming Growth Factor-β-activated Smad Complexes* , 2005, Journal of Biological Chemistry.

[11]  Yue Zhang,et al.  Regulation of the Polarity Protein Par6 by TGFß Receptors Controls Epithelial Cell Plasticity , 2005, Science.

[12]  J. Wrana,et al.  Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP‐dependent dendritogenesis , 2004, The EMBO journal.

[13]  A. Leutz,et al.  Essential Requirement of CCAAT/Enhancer Binding Proteins in Embryogenesis , 2004, Molecular and Cellular Biology.

[14]  J. Massagué,et al.  Transforming growth factor (cid:1) -induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation , 2022 .

[15]  M. Reiss,et al.  Targeting Endogenous Transforming Growth Factor β Receptor Signaling in SMAD4-Deficient Human Pancreatic Carcinoma Cells Inhibits Their Invasive Phenotype 1 , 2004, Cancer Research.

[16]  T. Ratliff TGF-Beta Signaling in Fibroblasts Modulates the Oncogenic Potential of Adjacent Epithelia , 2004 .

[17]  Fang Liu,et al.  Cyclin-dependent kinases regulate the antiproliferative function of Smads , 2004, Nature.

[18]  D. Accili,et al.  FoxOs at the Crossroads of Cellular Metabolism, Differentiation, and Transformation , 2004, Cell.

[19]  S. Anderson,et al.  Integration of Smad and Forkhead Pathways in the Control of Neuroepithelial and Glioblastoma Cell Proliferation , 2004, Cell.

[20]  Ryuji Kobayashi,et al.  IκB Kinase Promotes Tumorigenesis through Inhibition of Forkhead FOXO3a , 2004, Cell.

[21]  Steven P. Gygi,et al.  Stress-Dependent Regulation of FOXO Transcription Factors by the SIRT1 Deacetylase , 2004, Science.

[22]  Delin Chen,et al.  Mammalian SIRT1 Represses Forkhead Transcription Factors , 2004, Cell.

[23]  M. Washington,et al.  TGF-ß Signaling in Fibroblasts Modulates the Oncogenic Potential of Adjacent Epithelia , 2004, Science.

[24]  Gord Fishell,et al.  Foxg1 Suppresses Early Cortical Cell Fate , 2004, Science.

[25]  E. D. De Robertis,et al.  Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. , 2003, Genes & development.

[26]  J. Massagué Integration of Smad and MAPK pathways: a link and a linker revisited. , 2003, Genes & development.

[27]  Claudio Alarcón,et al.  Distinct Domain Utilization by Smad3 and Smad4 for Nucleoporin Interaction and Nuclear Import* , 2003, Journal of Biological Chemistry.

[28]  Ying E. Zhang,et al.  Smad-dependent and Smad-independent pathways in TGF-β family signalling , 2003, Nature.

[29]  E. Stanley,et al.  Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1 , 2003, The Journal of cell biology.

[30]  L. Wakefield,et al.  The two faces of transforming growth factor β in carcinogenesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[31]  R. Cardiff,et al.  Transforming growth factor beta signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[33]  C. Cordon-Cardo,et al.  A multigenic program mediating breast cancer metastasis to bone. , 2003, Cancer cell.

[34]  Carlos L. Arteaga,et al.  Targeting the TGFβ signaling network in human neoplasia , 2003 .

[35]  J. Massagué,et al.  A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. , 2003, Molecular cell.

[36]  Eric C. Griffith,et al.  The Many Forks in FOXO's Road , 2003, Science's STKE.

[37]  S. Wojtowicz-Praga Reversal of Tumor-induced Immunosuppression by TGF-β Inhibitors , 2003, Investigational New Drugs.

[38]  C. Hill,et al.  Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-beta receptor activity. , 2002, Molecular cell.

[39]  E. Lai,et al.  Brain Factor-1 Controls the Proliferation and Differentiation of Neocortical Progenitor Cells through Independent Mechanisms , 2002, The Journal of Neuroscience.

[40]  J. Massagué,et al.  Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. , 2002, Molecular cell.

[41]  J. Massagué,et al.  E2F4/5 and p107 as Smad Cofactors Linking the TGFβ Receptor to c-myc Repression , 2002, Cell.

[42]  J. Gurdon,et al.  Nuclear exclusion of Smad2 is a mechanism leading to loss of competence , 2002, Nature Cell Biology.

[43]  T. Muir,et al.  Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. , 2001, Molecular cell.

[44]  S. McKnight McBindall—A Better Name for CCAAT/Enhancer Binding Proteins? , 2001, Cell.

[45]  J Kuriyan,et al.  The TGF beta receptor activation process: an inhibitor- to substrate-binding switch. , 2001, Molecular cell.

[46]  J. Zavadil,et al.  Genetic programs of epithelial cell plasticity directed by transforming growth factor-β , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Victor E. Velculescu,et al.  Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis , 2001, Nature Genetics.

[48]  J. Massagué,et al.  TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b , 2001, Nature Cell Biology.

[49]  J. Massagué,et al.  Repression of p15INK4b expression by Myc through association with Miz-1 , 2001, Nature Cell Biology.

[50]  Eric C. Holland,et al.  Gliomagenesis: genetic alterations and mouse models , 2001, Nature Reviews Genetics.

[51]  J. Massagué,et al.  Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Mason,et al.  Inactivation of Smad-Transforming Growth Factor β Signaling by Ca2+-Calmodulin-Dependent Protein Kinase II , 2000, Molecular and Cellular Biology.

[53]  N. Wake,et al.  Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. , 2000, Cancer research.

[54]  M. Barbacid,et al.  Limited overlapping roles of P15INK4b and P18INK4c cell cycle inhibitors in proliferation and tumorigenesis , 2000, The EMBO journal.

[55]  J. Massagué,et al.  Controlling TGF-β signaling , 2000, Genes & Development.

[56]  J. Massagué,et al.  Structural basis of Smad2 recognition by the Smad anchor for receptor activation. , 2000, Science.

[57]  C. Niehrs,et al.  Synexpression groups in eukaryotes , 1999, Nature.

[58]  J. Massagué,et al.  Ubiquitin-dependent degradation of TGF-β-activated Smad2 , 1999, Nature Cell Biology.

[59]  J. Massagué,et al.  A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. , 1999, Genes & development.

[60]  E. Gabrielson,et al.  Microsatellite instability is uncommon in breast cancer. , 1999, Clinical cancer research : an official journal of the American Association for Cancer Research.

[61]  Morgan Huse,et al.  Crystal Structure of the Cytoplasmic Domain of the Type I TGF β Receptor in Complex with FKBP12 , 1999, Cell.

[62]  K. Kinzler,et al.  Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. , 1999, Cancer research.

[63]  R Wieser,et al.  TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. , 1999, The Journal of clinical investigation.

[64]  R. Hruban,et al.  Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. , 1998, Cancer research.

[65]  M. Reiss,et al.  Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. , 1998, Cancer research.

[66]  Yigong Shi,et al.  Crystal Structure of a Smad MH1 Domain Bound to DNA Insights on DNA Binding in TGF-β Signaling , 1998, Cell.

[67]  L. Dobens,et al.  Medea is a Drosophila Smad4 homolog that is differentially required to potentiate DPP responses. , 1998, Development.

[68]  K. Kinzler,et al.  Human Smad3 and Smad4 are sequence-specific transcription activators. , 1998, Molecular cell.

[69]  M. Kretzschmar,et al.  Opposing BMP and EGF signalling pathways converge on the TGF-β family mediator Smad1 , 1997, Nature.

[70]  Kirby D. Johnson,et al.  Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic , 1997, Nature.

[71]  J. Massagué,et al.  The TGF-beta family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. , 1997, Genes & development.

[72]  M. Ohue,et al.  Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. , 1997, Cancer letters.

[73]  J. Massagué,et al.  Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways , 1996, Nature.

[74]  Xin Chen,et al.  A transcriptional partner for MAD proteins in TGF-β signalling , 1996, Nature.

[75]  R. Weinberg,et al.  TGF beta-induced growth inhibition in primary fibroblasts requires the retinoblastoma protein. , 1996, Molecular biology of the cell.

[76]  Allan Balmain,et al.  TGFβ1 Inhibits the Formation of Benign Skin Tumors, but Enhances Progression to Invasive Spindle Carcinomas in Transgenic Mice , 1996, Cell.

[77]  J. Massagué,et al.  A human Mad protein acting as a BMP-regulated transcriptional activator , 1996, Nature.

[78]  P. Hoodless,et al.  MADR1, a MAD-Related Protein That Functions in BMP2 Signaling Pathways , 1996, Cell.

[79]  M. Yin,et al.  Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[80]  A. Iavarone,et al.  Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. , 1995, Genes & development.

[81]  Xiao-Fan Wang,et al.  Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[82]  K. Kinzler,et al.  Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. , 1995, Science.

[83]  S. Xuan,et al.  Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres , 1995, Neuron.

[84]  H. Moses,et al.  Transforming Growth Factor β and Cell Cycle Regulation , 1995 .

[85]  Gregory J. Hannon,et al.  pl5INK4B is a potentia| effector of TGF-β-induced cell cycle arrest , 1994, Nature.

[86]  Jeffrey L. Wrana,et al.  Mechanism of activation of the TGF-β receptor , 1994, Nature.

[87]  James M. Roberts,et al.  Cloning of p27 Kip1 , a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals , 1994, Cell.

[88]  James M. Roberts,et al.  Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-beta. , 1993, Science.

[89]  K. Lewis,et al.  Molecular characterization of rat transforming growth factor-β type II receptor , 1993 .

[90]  Jeffrey L. Wrana,et al.  TGFβ signals through a heteromeric protein kinase receptor complex , 1992, Cell.

[91]  J. Massagué,et al.  Novel activin receptors: Distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors , 1992, Cell.

[92]  J. Massagué,et al.  Growth inhibition by TGF-β linked to suppression of retinoblastoma protein phosphorylation , 1990, Cell.

[93]  J. Massagué,et al.  The transforming growth factor-β system, a complex pattern of cross-reactive ligands and receptors , 1987, Cell.

[94]  Robert Walgate,et al.  Proliferation , 1985, Nature.

[95]  R. Derynck,et al.  Specificity and versatility in tgf-beta signaling through Smads. , 2005, Annual review of cell and developmental biology.

[96]  Jonathan G. Rud,et al.  Nuclear targeting of transforming growth factor-beta-activated Smad complexes. , 2005, The Journal of biological chemistry.

[97]  J. Pietenpol,et al.  The role of transforming growth factor Β in glioma progression , 2004, Journal of Neuro-Oncology.

[98]  Ryuji Kobayashi,et al.  IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. , 2004, Cell.

[99]  J. Rich The role of transforming growth factor-beta in primary brain tumors. , 2003, Frontiers in bioscience : a journal and virtual library.

[100]  J. Rosen,et al.  The role of C/EBPbeta in mammary gland development and breast cancer. , 2003, Journal of mammary gland biology and neoplasia.

[101]  J. Massagué,et al.  Mechanisms of TGF-beta signaling from cell membrane to the nucleus. , 2003, Cell.

[102]  J. Massagué,et al.  Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. , 2003, Nature reviews. Cancer.

[103]  C. Arteaga,et al.  Targeting the TGF beta signaling network in human neoplasia. , 2003, Cancer cell.

[104]  S. Wojtowicz-Praga Reversal of tumor-induced immunosuppression by TGF-beta inhibitors. , 2003, Investigational new drugs.

[105]  L. Wakefield,et al.  The two faces of transforming growth factor beta in carcinogenesis. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[106]  R. Derynck,et al.  Smad-dependent and Smad-independent pathways in TGF-beta family signalling. , 2003, Nature.

[107]  R. Flavell,et al.  Transforming growth factor-beta in T-cell biology. , 2002, Nature reviews. Immunology.

[108]  J. Massagué,et al.  Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. , 2002, Nature.

[109]  A. Balmain,et al.  TGF-beta signaling in tumor suppression and cancer progression. , 2001, Nature genetics.

[110]  J. Massagué,et al.  TGFbeta signaling in growth control, cancer, and heritable disorders. , 2000, Cell.

[111]  J. Massagué,et al.  Controlling TGF-beta signaling. , 2000, Genes & development.

[112]  J. Massagué How cells read TGF-beta signals. , 2000, Nature reviews. Molecular cell biology.

[113]  J. Massagué,et al.  Ubiquitin-dependent degradation of TGF-beta-activated smad2. , 1999, Nature cell biology.

[114]  L. Gold The role for transforming growth factor-beta (TGF-beta) in human cancer. , 1999, Critical reviews in oncogenesis.

[115]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[116]  J. Rossant,et al.  The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. , 1998, Genes & development.

[117]  J. Pietenpol,et al.  The role of transforming growth factor beta in glioma progression. , 1998, Journal of neuro-oncology.

[118]  M. Reiss,et al.  Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. , 1998, Cancer research.

[119]  한평림 A Transcriptional Partner for MAD Proteins in TGF - b Signalling , 1996 .

[120]  H. Lodish,et al.  Molecular characterization of a type I serine-threonine kinase receptor for TGF-beta and activin in the rat pituitary tumor cell line GH3. , 1995, Experimental cell research.

[121]  James M. Roberts,et al.  p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. , 1994, Genes & development.

[122]  G. Hannon,et al.  p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. , 1994, Nature.

[123]  R Wieser,et al.  Mechanism of activation of the TGF-beta receptor. , 1994, Nature.

[124]  K. Lewis,et al.  Molecular characterization of rat transforming growth factor-beta type II receptor. , 1993, Biochemical and biophysical research communications.

[125]  J. Massagué,et al.  TGF beta signals through a heteromeric protein kinase receptor complex. , 1992, Cell.

[126]  J. Massagué,et al.  The transforming growth factor-beta family. , 1990, Annual review of cell biology.

[127]  M. Sporn,et al.  Transforming growth factor beta. , 1988, Advances in cancer research.