A review of vapor grown carbon nanofiber/polymer conductive composites

Abstract Vapor grown carbon nanofiber (VGCNF)/polymer conductive composites are elegant materials that exhibit superior electrical, electromagnetic interference (EMI) shielding effectiveness (SE) and thermal properties compared to conventional conductive polymer composites. This article reviews recent developments in VGCNF/polymer conductive composites. The article starts with a concise and general background about VGCNF production, applications, structure, dimension, and electrical, thermal and mechanical properties. Next composites of VGCNF/polymer are discussed. Composite electrical, EMI SE and thermal properties are elaborated in terms of nanofibers dispersion, distribution and aspect ratio. Special emphasis is paid to dispersion of nanofibers by melt mixing. Influence of other processing methods such as in-situ polymerization, spinning, and solution processing on final properties of VGCNF/polymer composite is also reviewed. We present properties of CNTs and CFs, which are competitive fillers to VGCNFs, and the most significant properties of their composites compared to those of VGCNF/polymer composites. At the conclusion of the article, we summarize the most significant achievements and address the future challenges and tasks in the area related to characterizing VGCNF aspect ratio and dispersion, determining the influence of processing methods and conditions on VGCNF/polymer composites and understanding the structure/property relationship in VGCNF/polymer composites.

[1]  C. Pittman,et al.  Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices , 1999 .

[2]  M. Dresselhaus,et al.  Selective and Efficient Impregnation of Metal Nanoparticles on Cup-Stacked-Type Carbon Nanofibers , 2003 .

[3]  Rodney Andrews,et al.  Fabrication of Carbon Multiwall Nanotube/Polymer Composites by Shear Mixing , 2002 .

[4]  P. B. Jana,et al.  Effects of sample thickness and fiber aspect ratio on EMI shielding effectiveness of carbon fiber filled polychloroprene composites in the X-band frequency range , 1992 .

[5]  K. Chou,et al.  Effect of mixing process on electromagnetic interference shielding effectiveness of nickel/acrylonitrile–butadiene–styrene composites , 2005 .

[6]  J. Vermant,et al.  Quantifying dispersion of layered nanocomposites via melt rheology , 2007 .

[7]  Milo S. P. Shaffer,et al.  Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties , 1999 .

[8]  U. Sundararaj,et al.  Simulation and visualization of flow in a new miniature mixer for multiphase polymer systems , 2005 .

[9]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[10]  Alexander B. Morgan,et al.  Rheological characterization of polystyrene–clay nanocomposites to compare the degree of exfoliation and dispersion , 2005 .

[11]  K. Miyasaka,et al.  Electrical conductivity of carbon-polymer composites as a function of carbon content , 1982 .

[12]  M. Sumita,et al.  Morphology and electrical properties of short carbon fiber‐filled polymer blends: High‐density polyethylene/poly(methyl methacrylate) , 1998 .

[13]  Otto Zhou,et al.  Alignment of carbon nanotubes in a polymer matrix by mechanical stretching , 1998 .

[14]  P. Serp,et al.  The effect of morphology on the properties of vapour-grown carbon fibres , 1997 .

[15]  J. Glatz-Reichenbach,et al.  FEATURE ARTICLE Conducting Polymer Composites , 1999 .

[16]  D.D.L. Chung,et al.  Electrical and mechanical properties of electrically conductive polyethersulfone composites , 1994 .

[17]  A. Dufresne,et al.  Processing and characterization of carbon nanotube/poly(styrene-co-butyl acrylate) nanocomposites , 2002 .

[18]  Terry M. Tritt,et al.  Mechanical properties of vapor-grown carbon fiber , 1995 .

[19]  J. P. Donohoe,et al.  Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites , 2004 .

[20]  Yong Zhang,et al.  Effect of different carbon fillers on the properties of PP composites : Comparison of carbon black with multiwalled carbon nanotubes , 2006 .

[21]  Jean-François Feller,et al.  Conductive polymer composites (CPCs): comparison of electrical properties of poly(ethylene-co-ethyl acrylate)-carbon black with poly(butylene terephthalate)/poly(ethylene-co-ethyl acrylate)-carbon black† , 2002 .

[22]  S. Nagai,et al.  Thermal conductivities of composites in several types of dispersion systems , 1991 .

[23]  T. Peijs,et al.  Reinforcing potential of carbon nanotubes in oriented polymer fibres , 2007 .

[24]  B. G. Soares,et al.  Electrical Conductivity of Polystyrene-Rubber Blends Loaded with Carbon Black , 1997 .

[25]  Mool C. Gupta,et al.  A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. , 2005, Journal of nanoscience and nanotechnology.

[26]  Jan-Chan Huang,et al.  Carbon black filled conducting polymers and polymer blends , 2002 .

[27]  J. Keith,et al.  Shielding effectiveness density theory for carbon fiber/ nylon 6,6 composites , 2005 .

[28]  Z. Osawa,et al.  Thermal stability of shielding effectiveness of electromagnetic interference of composites , 1987 .

[29]  K. Alam,et al.  Electrically Conductive Carbon Nanofiber Composites with High-Density Polyethylene and Glass Fibers , 2007 .

[30]  Liang Zuo,et al.  Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20Kto473K , 2005 .

[31]  W. Brittain,et al.  Polycarbonate carbon nanofiber composites , 2005 .

[32]  Christopher W. Macosko,et al.  Linear low density polyethylene (LLDPE)/clay nanocomposites. Part I: Structural characterization and quantifying clay dispersion by melt rheology , 2007 .

[33]  D. Chung,et al.  Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers , 2002 .

[34]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[35]  M. Sumita,et al.  A Self-Assembled Electric Conductive Network in Short Carbon Fiber Filled Poly(methyl methacrylate) Composites with Selective Adsorption of Polyethylene , 1999 .

[36]  C. Macosko,et al.  Improving Polymer Blend Dispersions in Mini-Mixers , 2001 .

[37]  J. Markarian Increased demands in electronics drive additive developments in conductivity , 2005 .

[38]  Joerg Mayer,et al.  Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix , 2002 .

[39]  U. Sundararaj,et al.  Big returns from small fibers: A review of polymer/carbon nanotube composites , 2004 .

[40]  M. Sumita,et al.  Temperature and time dependence of conductive network formation: Dynamic percolation and percolation time , 2006 .

[41]  Sheng Lin-Gibson,et al.  Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites , 2007 .

[42]  David Markham,et al.  Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design , 1999 .

[43]  Eric A. Grulke,et al.  MULTIWALLED CARBON NANOTUBE POLYMER COMPOSITES: SYNTHESIS AND CHARACTERIZATION OF THIN FILMS , 2002 .

[44]  Karen Lozano,et al.  Reinforcing Epoxy Polymer Composites Through Covalent Integration of Functionalized Nanotubes , 2004 .

[45]  W. J. Woo,et al.  EMI Shielding Effectiveness of Carbon Nanofiber Filled Poly(vinyl alcohol) Coating Materials , 2001 .

[46]  Mohammed H Al-Saleh,et al.  An innovative method to reduce percolation threshold of carbon black filled immiscible polymer blends , 2008 .

[47]  N. Tsubokawa Preparation and Properties of Polymer-grafted Carbon Nanotubes and Nanofibers , 2005 .

[48]  C. Beetz,et al.  Mechanical properties of vapour-grown carbon fibres , 1987 .

[49]  William J. Brittain,et al.  Synthesis and Characterization of PMMA Nanocomposites by Suspension and Emulsion Polymerization , 2001 .

[50]  Susumu Nagai,et al.  Thermal conductivity of a polymer composite , 1993 .

[51]  J. Feller Conductive polymer composites: Influence of extrusion conditions on positive temperature coefficient effect of poly(butylene terephthalate)/poly(olefin)–carbon black blends , 2004 .

[52]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[53]  Mool C. Gupta,et al.  Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding. , 2005, Nano letters.

[54]  C. Chan,et al.  Electrical Properties of Carbon Black-Filled Polypropylene/Ultra-High Molecular Weight Polyethylene Composites , 1999 .

[55]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[56]  Qing-Qing Ni,et al.  Electromagnetic interference shielding effect of nanocomposites with carbon nanotube and shape memory polymer , 2007 .

[57]  D.D.L. Chung,et al.  Carbon fiber composites , 1994 .

[58]  S. Tzeng,et al.  EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites , 2001 .

[59]  D. Bigg The effect of compounding on the conductive properties of EMI shielding compounds , 1984 .

[60]  Chi-Yuan Huang,et al.  The EMI shielding effectiveness of PC/ABS/nickel-coated-carbon-fibre composites , 2000 .

[61]  Gary G. Tibbetts,et al.  Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites , 2001 .

[62]  Vladimir Zalmanovich Mordkovich,et al.  Carbon Nanofibers: A New Ultrahigh-Strength Material for Chemical Technology , 2003 .

[63]  J. Fischer,et al.  Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites , 2005 .

[64]  Manjusri Misra,et al.  Mechanical properties of carbon nanotubes and their polymer nanocomposites. , 2005, Journal of nanoscience and nanotechnology.

[65]  Wen-Yen Chiang,et al.  Effect of titanate coupling agent on electromagnetic interference shielding effectiveness and mechanical properties of PC-ABS-NCF composite , 1992 .

[66]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[67]  Thermal Conductivity of Single-Walled Carbon Nanotube/PMMA Nanocomposites , 2007 .

[68]  G. Xu,et al.  Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube/poly(methyl methacrylate) composites , 2002 .

[69]  K. Lozano,et al.  Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene , 2007 .

[70]  Arjun G. Yodh,et al.  Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites , 2005 .

[71]  Mool C. Gupta,et al.  Electrical Conductivity and Electromagnetic Interference Shielding of Multi-walled Carbon Nanotube Filled Polymer Composites , 2004 .

[72]  Lawrence T. Drzal,et al.  Thermo-physical properties of epoxy nanocomposites reinforced by carbon nanotubes and vapor grown carbon fibers , 2006 .

[73]  T. K. Chaki,et al.  Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites , 2000 .

[74]  K. Balasubramanian,et al.  Preparation of nickel coated mica as a conductive filler , 2002 .

[75]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[76]  M. Dresselhaus,et al.  Structural characterization of cup-stacked-type nanofibers with an entirely hollow core , 2002 .

[77]  C. A. Bernardo,et al.  Transport properties of polymer-vapour grown carbon fibre composites , 2000 .

[78]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[79]  Hui-Ming Cheng,et al.  Mechanical and electrical properties of a MWNT/epoxy composite , 2002 .

[80]  Guozhang Wu,et al.  Morphology and electrical conductivity of injection-molded polypropylene/carbon black composites with addition of high-density polyethylene , 2006 .

[81]  C. Macosko,et al.  Milligrams to kilograms: An evaluation of mixers for reactive polymer blending† , 1995 .

[82]  P. Ajayan,et al.  Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite , 1994, Science.

[83]  M. Clifford,et al.  Strain amplitude response and the microstructure of PA/clay nanocomposites , 2005 .

[84]  F. Lux,et al.  Models proposed to explain the electrical conductivity of mixtures made of conductive and insulating materials , 1993 .

[85]  U. Sundararaj,et al.  Electrical, rheological, and mechanical properties of polystyrene/copper nanowire nanocomposites , 2007 .

[86]  Karen Lozano,et al.  A study on nanofiber-reinforced thermoplastic composites (II): Investigation of the mixing rheology and conduction properties , 2001 .

[87]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[88]  J. Coleman,et al.  Small but strong: A review of the mechanical properties of carbon nanotube–polymer composites , 2006 .

[89]  Bin Zhang,et al.  Gas sensitive vapor grown carbon nanofiber/polystyrene sensors , 2006 .

[90]  Jonathan N. Coleman,et al.  Mechanical Reinforcement of Polymers Using Carbon Nanotubes , 2006 .

[91]  P. Watts,et al.  A low resistance boron-doped carbon nanotube–polystyrene composite , 2001 .

[92]  S. Jana,et al.  Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing , 2007 .

[93]  Xiao Lin,et al.  Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. , 2006, Nano letters.

[94]  Xiaoping Shui,et al.  Submicron diameter nickel filaments and their polymer-matrix composites , 2000 .

[95]  K. Watson,et al.  Carbon nanotube-conductive additive-space durable polymer nanocomposite films for electrostatic charge dissipation , 2004 .

[96]  Vladimir I. Merkulov,et al.  Patterned growth of individual and multiple vertically aligned carbon nanofibers , 2000 .

[97]  David P. Anderson,et al.  Morphology and modulus of vapor grown carbon nano fibers , 2006 .

[98]  D. Chung Electromagnetic interference shielding effectiveness of carbon materials , 2001 .

[99]  Innovative ESD thermoplastic composites structured through melt flow processing , 2000 .

[100]  Jiang Zhu,et al.  Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization , 2003 .

[101]  F. .. Nieves,et al.  Optimization of the heterocoagulation process of polymer colloids with different particle size , 1995 .

[102]  X. Bian,et al.  Ultralight conductive carbon-nanotube-polymer composite. , 2007, Small.

[103]  Z. Osawa,et al.  Thermal stability of the shielding effectiveness of composites to electromagnetic interference. Effects of matrix polymers and surface treatment of fillers , 1992 .

[104]  W. S. Johnson,et al.  Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites , 2004 .

[105]  Dusan A. Pejakovic,et al.  Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst , 2004 .

[106]  K. Mukhopadhyay,et al.  Synthesis of coiled/straight carbon nanofibers by catalytic chemical vapor deposition , 2004 .

[107]  Xinli Jing,et al.  Intrinsically conducting polymers for electromagnetic interference shielding , 2005 .

[108]  M. Sumita,et al.  Electrical properties of epoxy resin filled with carbon fibers , 1999 .

[109]  K. Sugimoto,et al.  Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets , 2005 .

[110]  A. Gu,et al.  Electric conductivity of PS/PA6/carbon black composites , 2007 .

[111]  M. Radosavljevic,et al.  Carbon nanotube composites for thermal management , 2002, cond-mat/0205418.

[112]  Eric Vanlathem,et al.  Kinetic and thermodynamic control of the selective localization of carbon black at the interface of immiscible polymer blends , 1998 .

[113]  B. Kandasubramanian,et al.  An electroconductive filler for shielding plastics , 2005 .

[114]  Nadia Grossiord,et al.  Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology , 2007 .

[115]  W. Brittain,et al.  Bottom-up synthesis of PS–CNF nanocomposites , 2005 .

[116]  K A Stelson,et al.  Carbon nanotube based transparent conductive thin films. , 2006, Journal of nanoscience and nanotechnology.

[117]  Yongsheng Chen,et al.  Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites , 2007 .

[118]  Wei Zhou,et al.  Nanotube Networks in Polymer Nanocomposites: Rheology and Electrical Conductivity , 2004 .

[119]  Joseph M. McManaman,et al.  EMI Shielding Effectiveness of Copper/Epoxy Composites , 2005 .

[120]  D.D.L. Chung,et al.  Materials for electromagnetic interference shielding , 2000, Materials Chemistry and Physics.

[121]  B. Chowdhry,et al.  Heteroaggregation in colloidal dispersions , 1995 .

[122]  Shigeo Asai,et al.  Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black , 1991 .

[123]  D. Bigio,et al.  Melt blending of linear low‐density polyethylene and polystyrene in a Haake internal mixer. II. Morphology‐processing relationships , 1995 .

[124]  Larry Rupprecht,et al.  Conductive Polymers and Plastics: In Industrial Applications , 1999 .

[125]  B. Maruyama,et al.  Carbon nanotubes and nanofibers in composite materials , 2002 .

[126]  U. Sundararaj,et al.  Electrostatically Dissipative Polystyrene Nanocomposites containing Copper Nanowires , 2005 .

[127]  K. Cheng,et al.  Processing conditions for electromagnetic interference shielding effectiveness and mechanical properties of acrylonitrile‐butadiene‐styrene based composites , 1997 .

[128]  B. Wei,et al.  High rate reversibility anode materials of lithium batteries from vapor-grown carbon nanofibers. , 2006, The journal of physical chemistry. B.

[129]  Joseph M. McManaman,et al.  Short shaped copper fibers in an epoxy matrix : Their role in a multifunctional composite , 2006 .

[130]  Sung-Moo Song,et al.  Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers , 2005 .

[131]  Thomas Reisinger,et al.  A rheological method to compare the degree of exfoliation of nanocomposites , 2003 .

[132]  C. M. Trottier,et al.  Properties and characterization of carbon‐nanotube‐based transparent conductive coating , 2005 .

[133]  W. Brandl,et al.  Production and characterisation of vapour grown carbon fiber/polypropylene composites , 2004 .

[134]  G. Tibbetts,et al.  Mechanical and electrical propertiesof vapor-grown carbon fiber thermoplastic composites , 2002 .

[135]  P. Pötschke,et al.  Carbon nanofibers for composite applications , 2004 .

[136]  Siew Yee Wong,et al.  Electrically Conductive Epoxy/Clay/Vapor Grown Carbon Fiber Hybrids , 2006 .

[137]  Jianguo Deng,et al.  Carbon nanotube–polyaniline hybrid materials , 2002 .

[138]  Nicholas A. Kotov,et al.  Multilayer composites from vapor-grown carbon nano-fibers , 2006 .

[139]  Torsten Prasse,et al.  Electric anisotropy of carbon nanofibre/epoxy resin composites due to electric field induced alignment , 2003 .

[140]  M. Gordon,et al.  Simultaneous Etching and Oxidation of Vicinal Si(100) Surfaces: Atomistic Lattice-Gas Modeling of Morphological Evolution , 2005 .

[141]  K. Winey,et al.  Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes , 2008 .

[142]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[143]  J. Simpson,et al.  Comparative measures of single-wall carbon nanotube dispersion. , 2006, The journal of physical chemistry. B.

[144]  J. Amarasekera Conductive plastics for electrical and electronic applications , 2005 .

[145]  J. Ting,et al.  Ultra high thermal conductivity polymer composites , 2002 .

[146]  L. C. Davis Polarization forces and conductivity effects in electrorheological fluids , 1992 .

[147]  Musa R. Kamal,et al.  Estimation of the volume resistivity of electrically conductive composites , 1997 .

[148]  K. Lozano Vapor-grown carbon-fiber composites: Processing and electrostatic dissipative applications , 2000 .

[149]  Bin Yang,et al.  Improvement of a gram-scale mixer for polymer blending , 2006 .

[150]  S. Lyuksyutov,et al.  Production of electrically conductive networks in immiscible polymer blends by chaotic mixing , 2006 .

[151]  T. K. Chaki,et al.  Electromagnetic interference shielding effectiveness of conductive carbon black and carbon fiber‐filled composites based on rubber and rubber blends , 2001 .

[152]  K. Lozano,et al.  Nanofiber‐reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses , 2001 .

[153]  S. Jeelani,et al.  Effect vapor grown carbon nanofiber on thermal and mechanical properties of epoxy , 2007 .

[154]  C. Friedrich,et al.  Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene , 2004 .

[155]  A. Gu,et al.  Effect of morphology on the electric conductivity of binary polymer blends filled with carbon black , 2007 .

[156]  M. Jhon,et al.  Rheology of Poly(ethylene oxide)/Organoclay Nanocomposites , 2001 .

[157]  Petra Pötschke,et al.  Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene , 2004 .

[158]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[159]  Shuying Yang,et al.  Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites , 2005 .

[160]  D.D.L. Chung,et al.  Electrical applications of carbon materials , 2004 .

[161]  M. Dresselhaus,et al.  Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications , 2001 .

[162]  Claudio Nicolini,et al.  Synthesis of Multiwalled Carbon Nanotubes and Poly(o-anisidine) Nanocomposite Material: Fabrication and Characterization of Its Langmuir−Schaefer Films , 2002 .

[163]  Gary G. Tibbetts,et al.  A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites , 2007 .

[164]  M. Endo,et al.  Production and characterization of polycarbonate composite sheets reinforced with vapor grown carbon fiber , 2006 .

[165]  O. Chauvet,et al.  Synthesis and characterization of new polyaniline/nanotube composites , 2003 .

[166]  B. Tang,et al.  Preparation, Alignment, and Optical Properties of Soluble Poly(phenylacetylene)-Wrapped Carbon Nanotubes† , 1999 .

[167]  Milo S. P. Shaffer,et al.  Carbon Nanotube and Polypyrrole Composites: Coating and Doping , 2000 .

[168]  R. Lawrence,et al.  Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites. , 2007, Journal of Nanoscience and Nanotechnology.

[169]  Spandan Maiti,et al.  Electromagnetic interference shielding of carbon nanotube/ethylene vinyl acetate composites , 2008 .

[170]  Rex J. Kuriger,et al.  Extrusion conditions and properties of vapor grown carbon fiber reinforced polypropylene , 2001 .

[171]  Swapan K. Bhattacharya,et al.  Metal-filled polymers : properties and applications , 1986 .

[172]  J. King,et al.  Synergistic effects of carbon fillers on shielding effectiveness in conductive nylon 6,6‐ and polycarbonate‐based resins , 2003 .

[173]  K. Lozano,et al.  Effects of nanofiber treatments on the properties of vapor-grown carbon fiber reinforced polymer composites , 2003 .

[174]  Jan-Chan Huang,et al.  EMI shielding plastics: A review , 1995 .

[175]  Mohammed H Al-Saleh,et al.  Electromagnetic Interference (EMI) Shielding Effectiveness of PP/PS Polymer Blends Containing High Structure Carbon Black , 2008 .

[176]  J. M. Kikkawa,et al.  Very Low Conductivity Threshold in Bulk Isotropic Single‐Walled Carbon Nanotube–Epoxy Composites , 2005 .

[177]  U. Sundararaj,et al.  Low Electrical Percolation Threshold of Silver and Copper Nanowires in Polystyrene Composites , 2006 .

[178]  S. Motojima,et al.  Preparation, Morphology, and Growth Mechanism of Carbon Nanocoils , 2002 .

[179]  Christa M. Homenick,et al.  Polymer Grafting of Carbon Nanotubes Using Living Free‐Radical Polymerization , 2007 .

[180]  J. Hone,et al.  Thermal properties of carbon nanotubes and nanotube-based materials , 2002 .

[181]  Jeng-Sheng Huang,et al.  Effects of molding conditions on the electromagnetic interference performance of conductive ABS parts , 2005 .

[182]  M. Sumita,et al.  Entropy Penalty-Induced Self-Assembly in Carbon Black or Carbon Fiber Filled Polymer Blends , 2002 .

[183]  C. Chan,et al.  A method to control the dispersion of carbon black in an immiscible polymer blend , 2003 .

[184]  T. K. Chaki,et al.  Electrical conductivity and electromagnetic interference shielding effectiveness of polyaniline–ethylene vinyl acetate composites , 2005 .

[185]  I. Kinloch,et al.  Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites , 2003 .

[186]  Scott T. Huxtable,et al.  Interfacial heat flow in carbon nanotube suspensions , 2003, Nature materials.

[187]  W. Brittain,et al.  Effect of clay type on morphology and thermal stability of PMMA–clay nanocomposites prepared by heterocoagulation method , 2004 .

[188]  Petra Pötschke,et al.  Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites , 2004 .

[189]  J. Keith,et al.  Shielding-Effectiveness Modeling of Carbon-Fiber/Nylon- 6,6 Composites , 2005 .