Stability of Nanodiamond

Publisher Summary The theoretical and computational studies outlined in this chapter focus on the phase transitions among nanodiamond, graphitic, and fullerenic forms of nanocarbon. Computationally, these transitions are represented by quantum mechanical methods, and the transformations have been modeled using a variety of cluster geometries and sizes. The range indicates that outside this range, the nanodiamonds will be metastable with respect to a transformation to graphitic or fullerenic phases. The identification of a co-existence region indicates that the phase transitions are not entirely thermodynamically driven, and that other factors such as surface energies, surface stress and charge, and kinetic considerations, may be instrumental in inducing a change of phase. One property, fundamental to the stability of nanodiamond, is the degree of surface hydrogenation. A logical explanation is that although H-terminated nanodiamonds may be slightly higher in energy than their dehydrogenated counterparts, they are metastable below the hydrogen desorption temperature, and there will be no spontaneous hydrogen desorption, and recombination without a suitable driving force.

[1]  R. Berman,et al.  On the Graphite ‐ Diamond Equilibrium , 1955 .

[2]  A. G. Bogachev,et al.  Phase transformations in pressure polymerized C60 , 2003 .

[3]  S. Russo,et al.  Ab Initio Modeling of Diamond Nanowire Structures , 2003 .

[4]  J. Angus,et al.  Graphitization Effects on Diamond Surfaces and the Diamond/Graphite Interface , 1996 .

[5]  R. Biswas,et al.  Complex tetrahedral structures of silicon and carbon under pressure , 1984 .

[6]  S. Khanna,et al.  Growth and Formation of Fullerene Clusters , 2001 .

[7]  R. Ruoff,et al.  Would Diamond Nanorods Be Stronger than Fullerene Nanotubes , 2003 .

[8]  Bonding and Stability of Hybrid Diamond/Nanotube Structures , 2003 .

[9]  S. Russo,et al.  Modeling of stability and phase transformations in quasi-zero dimensional nanocarbon systems , 2005 .

[10]  Hydrogen Stabilization of (111) Nanodiamond , 2002 .

[11]  E. G. Rakov Calculation of diamond chemical vapor deposition region in C–H–O phase diagram , 1996 .

[12]  Y. Wan,et al.  Ternary C-H-halogen phase diagram for CVD diamond , 2000 .

[13]  G. Seifert,et al.  Concentric-shell fullerenes and diamond particles: A molecular-dynamics study , 1999 .

[14]  M. Gamarnik Size-related stabilization of diamond nanoparticles , 1996 .

[15]  C. Wang,et al.  Heat-induced transformation of nanodiamond into a tube-shaped fullerene: a molecular dynamics simulation. , 2003, Physical review letters.

[16]  R C DeVries,et al.  Synthesis of Diamond Under Metastable Conditions , 1987 .

[17]  F. Ree,et al.  Carbon particle phase stability as a function of size , 1998 .

[18]  D. Tománek,et al.  Growth regimes of carbon clusters. , 1991, Physical review letters.

[19]  S. Russo,et al.  Ab initio modelling of the stability of nanocrystalline diamond morphologies , 2003 .

[20]  I. Snook,et al.  Phase stability of nanocarbon in one dimension: nanotubes versus diamond nanowires. , 2004, The Journal of chemical physics.

[21]  J. D. Johnson,et al.  Carbon clustering in detonations , 1987 .

[22]  T. Sekine,et al.  Sixfold-coordinated carbon as a postdiamond phase , 1999 .

[23]  M. Yin Si-III (BC-8) crystal phase of Si and C: Structural properties, phase stabilities, and phase transitions , 1984 .

[24]  J. Ihm,et al.  Energetics of large carbon clusters: Crossover from fullerenes to nanotubes , 2002 .

[25]  S. Russo,et al.  Surface structure of cubic diamond nanowires , 2003 .

[26]  S. Rotkin,et al.  Bond passivation model: Diagram of carbon nanoparticle stability , 1999 .

[27]  M. Terranova,et al.  Density Functional Study of H-induced Defects as Nucleation Sites in Hybrid Carbon Nanomaterials , 2005 .

[28]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .

[29]  A. Vereshchagin Phase Diagram of Ultrafine Carbon , 2002 .

[30]  H. M. Jang,et al.  Theory of the charged cluster formation in the low pressure synthesis of diamond: Part II. Free energy function and thermodynamic stability , 1998 .

[31]  N. Hwang,et al.  Chemical potential of carbon in the low pressure synthesis of diamond , 1996 .

[32]  Carbon based nanostructures: diamond clusters structured with nanotubes , 2003 .

[33]  Peng-Fei Wang,et al.  Projective phase diagrams for CVD diamond growth from C–H and C–H–O systems , 2000 .

[34]  Amanda Barnard,et al.  Structural Relaxation and Relative Stability of Nanodiamond Morphologies , 2002 .

[35]  F. Banhart,et al.  RADIATION-INDUCED TRANSFORMATION OF GRAPHITE TO DIAMOND , 1997 .

[36]  Jamieson,et al.  Investigation of carbon near the graphite-diamond-liquid triple point. , 1992, Physical review letters.

[37]  Carbon clusters near the crossover to fullerene stability , 1999, physics/9909037.

[38]  Vladimir L. Kuznetsov,et al.  Kinetics of the graphitization of dispersed diamonds at “low” temperatures , 2000 .

[39]  F. Banhart,et al.  Irradiation-induced transformation of graphite to diamond: A quantitative study , 2000 .

[40]  F. Charlet,et al.  Evaluation of various theoretical equations of state used in calculation of detonation properties , 1998 .

[41]  David-Wei Zhang,et al.  Phase diagrams for activated CVD diamond growth , 1998 .

[42]  A. Staver,et al.  Ultrafine diamond powders made by the use of explosion energy , 1985 .

[43]  R. Martin,et al.  Phase diagram of carbon at high pressure: Analogy to silicon , 1996 .

[44]  Tosatti,et al.  SC4: A metallic phase of carbon at terapascal pressures. , 1996, Physical review. B, Condensed matter.

[45]  G. Kahl,et al.  Accurate determination of the phase diagram of model fullerenes , 2003 .

[46]  S. Russo,et al.  Hydrogenation of nanodiamond surfaces: structure and effects on crystalline stability , 2003 .

[47]  B. Sundqvist Buckyballs under pressure , 2001 .

[48]  F. Ree Systematics of high‐pressure and high‐temperature behavior of hydrocarbons , 1979 .

[49]  V. P. Poliakov,et al.  The effect of metal-solvent properties on the alteration of specific zones on a carbon phase diagram , 2001 .

[50]  Simulations of diamond nucleation in carbon fullerene cores , 2001 .

[51]  J. Li,et al.  The size dependence of the diamond-graphite transition , 2000 .

[52]  G. D. Holder,et al.  Adamantane and diamantane; phase diagrams, solubilities, and rates of dissolution , 1996 .

[53]  S. Russo,et al.  First Principles Investigations of Diamond Ultrananocrystals , 2003 .

[54]  R. Berman,et al.  The Graphite–Diamond Equilibrium , 1955, Nature.

[55]  P. Badziag,et al.  Nanometre-sized diamonds are more stable than graphite , 1990, Nature.

[56]  W. Gust Phase transition and shock-compression parameters to 120 GPa for three types of graphite and for amorphous carbon , 1980 .

[57]  Martin,et al.  Structural and electronic properties of amorphous carbon. , 1989, Physical review letters.

[58]  J. Badding,et al.  FLAPW investigation of the stability and equation of state of rectangulated carbon , 2002 .

[59]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[60]  F. Ree,et al.  Carbon particle phase transformation kinetics in detonation waves , 2000 .

[61]  Elizabeth C. Dickey,et al.  Model of carbon nanotube growth through chemical vapor deposition , 1999 .

[62]  F. Banhart Structural transformations in carbon nanoparticles induced by electron irradiation , 2002 .

[63]  Vladimir L. Kuznetsov,et al.  Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface , 1999 .

[64]  R. O. Jones Density functional study of carbon clusters C2n (2⩽n⩽16). I. Structure and bonding in the neutral clusters , 1999 .

[65]  S. Russo,et al.  From nanodiamond to diamond nanowires: structural properties affected by dimension , 2004 .

[66]  Hafner,et al.  Ab initio molecular dynamics for open-shell transition metals. , 1993, Physical review. B, Condensed matter.

[67]  S. Russo,et al.  Size dependent phase stability of carbon nanoparticles: nanodiamond versus fullerenes , 2003 .

[68]  Q. Jiang,et al.  Size and temperature dependence of nanodiamond–nanographite transition related with surface stress , 2002 .

[69]  N. Hwang,et al.  Charged cluster model in the low pressure synthesis of diamond , 1996 .

[70]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[71]  G. Galli,et al.  Ultradispersity of diamond at the nanoscale , 2003, Nature materials.

[72]  W. Nellis,et al.  Carbon at pressures in the range 0.1–1 TPa (10 Mbar) , 2001 .

[73]  R. Grover Does diamond melt , 1979 .

[74]  James N. Glosli,et al.  Phase transformations of nanometer size carbon particles in shocked hydrocarbons and explosives , 2001 .

[75]  Laurence E. Fried,et al.  Explicit Gibbs free energy equation of state applied to the carbon phase diagram , 2000 .

[76]  Ree,et al.  High-pressure liquid-liquid phase change in carbon. , 1993, Physical review. B, Condensed matter.

[77]  P. Raghavan,et al.  Large-scale quantum mechanical simulations of carbon nanowires , 2000 .

[78]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[79]  G. Yang,et al.  Phase transformation between diamond and graphite in preparation of diamonds by pulsed-laser induced liquid-solid interface reaction , 1999 .

[80]  S. Russo,et al.  Coexistence of bucky diamond with nanodiamond and fullerene carbon phases , 2003 .

[81]  Giulia Galli,et al.  Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. , 2003, Physical review letters.

[82]  J. Glosli,et al.  Kinetics and thermodynamic behavior of carbon clusters under high pressure and high temperature , 1998 .

[83]  Gamarnik Energetical preference of diamond nanoparticles. , 1996, Physical review. B, Condensed matter.

[84]  J. Álvarez,et al.  Phase diagram of carbon nanotube ropes , 2004 .

[85]  Y. Kawazoe,et al.  Phase diagram of single-wall carbon nanotube crystals under hydrostatic pressure , 2004 .