An exact solution to a Stefan problem with variable thermal conductivity and a Robin boundary condition

[1]  Domingo A. Tarzia,et al.  Existence of an exact solution for a one-phase Stefan problem with nonlinear thermal coefficients from Tirskii's method , 2007 .

[2]  D. Tarzia An Explicit Solution for a Two-Phase Unidimensional Stefan Problem with a Convective Boundary Condition at the Fixed Face ∗ , 2004 .

[3]  N. Starostin,et al.  Calculating thermal insulation thickness and embedment depth of underground heat supply pipeline for permafrost soils , 2014 .

[4]  D. Tarzia,et al.  A sensitivity analysis for the determination of unknown thermal coefficients through a phase-change process with temperature-dependent thermal conductivity☆ , 2011 .

[5]  Adriana C. Briozzo,et al.  One-phase Stefan problem with temperature-dependent thermal conductivity and a boundary condition of Robin type , 2015 .

[6]  D. Tarzia Explicit and Approximated Solutions for Heat and Mass Transfer Problems with a Moving Interface , 2011 .

[7]  Andrea N. Ceretani,et al.  Existence and uniqueness of the modified error function , 2017, Appl. Math. Lett..

[8]  J. E. Sunderland,et al.  A phase change problem with temperature-dependent thermal conductivity and specific heat , 1987 .

[9]  V. Voller,et al.  An analytical solution for a Stefan problem with variable latent heat , 2004 .

[10]  Germán Ariel Torres,et al.  On a convective condition in the diffusion of a solvent into a polymer with non-constant conductivity coefficient , 2009, Math. Comput. Simul..

[11]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[12]  John Crank,et al.  The Mathematics Of Diffusion , 1956 .

[13]  Virgil J. Lunardini,et al.  Heat Transfer with Freezing and Thawing , 1991 .

[14]  J. Stefan,et al.  Ueber die Verdampfung und die Auflösung als Vorgänge der Diffusion , 1890 .

[15]  A. Farina,et al.  On a free boundary problem arising in snow avalanche dynamics , 2016 .

[16]  R. Kannan,et al.  Nonlinear boundary value problems on semi-infinite intervals , 1994 .

[17]  A. Borodin,et al.  Modeling of the Temperature Field of a Continuously Cast Ingot with Determination of the Position of the Phase-Transition Boundary , 2014 .

[18]  An exact methodology for solving nonlinear diffusion equations based on integral transforms , 1987 .

[19]  D. Tarzia,et al.  Similarity solutions for thawing processes with a convective boundary condition , 2014, 1405.5489.

[20]  D. Tarzia The determination of unknown thermal coefficients through phase change process with temperature-dependent thermal conductivity , 1998 .

[21]  Relationship between Neumann solutions for two-phase Lame-Clapeyron-Stefan problems with convective and temperature boundary conditions , 2014, 1406.0552.

[22]  M. Primicerio,et al.  A free boundary problem for CaCO3 neutralization of acid waters , 2014 .

[23]  Henrik Shahgholian,et al.  Free boundary problems: the forefront of current and future developments , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  J. Khodadadi,et al.  One-dimensional Stefan problem formulation for solidification of nanostructure-enhanced phase change materials (NePCM) , 2013 .

[25]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[26]  B. Kurylyk,et al.  Improved Stefan Equation Correction Factors to Accommodate Sensible Heat Storage during Soil Freezing or Thawing , 2016 .

[27]  C. Wagner Diffusion of Lead Chloride Dissolved in Solid Silver Chloride , 1950 .

[28]  A. D. Solomon,et al.  Mathematical Modeling Of Melting And Freezing Processes , 1992 .

[29]  A. Polyanin,et al.  Handbook of Exact Solutions for Ordinary Differential Equations , 1995 .

[30]  J. Stefan Über die Diffusion von Säuren und Basen gegen einander , 1889 .

[31]  J. Sunderland,et al.  Phase Change Problems With Temperature-Dependent Thermal Conductivity , 1974 .