Design and optimization of a series of 4-(3-azabicyclo[3.1.0]hexan-3-yl)pyrimidin-2-amines: Dual inhibitors of TYK2 and JAK1.

[1]  S. Spergel,et al.  Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165. , 2019, Journal of medicinal chemistry.

[2]  W. Leonard,et al.  The γc Family of Cytokines: Basic Biology to Therapeutic Ramifications. , 2019, Immunity.

[3]  O. Silvennoinen,et al.  Selective JAKinibs: Prospects in Inflammatory and Autoimmune Diseases , 2019, BioDrugs.

[4]  D. S. Weinstein,et al.  Advances in the Discovery and Development of Selective Tyrosine Kinase 2 (TK2) Inhibitors , 2018, 2018 Medicinal Chemistry Reviews.

[5]  L. Olson,et al.  In vitro and in vivo characterization of the JAK1 selectivity of upadacitinib (ABT-494) , 2018, BMC Rheumatology.

[6]  Li Xing,et al.  Dual Inhibition of TYK2 and JAK1 for the Treatment of Autoimmune Diseases: Discovery of (( S)-2,2-Difluorocyclopropyl)((1 R,5 S)-3-(2-((1-methyl-1 H-pyrazol-4-yl)amino)pyrimidin-4-yl)-3,8-diazabicyclo[3.2.1]octan-8-yl)methanone (PF-06700841). , 2018, Journal of medicinal chemistry.

[7]  K. Page,et al.  The Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of a TYK2/JAK1 Inhibitor (PF‐06700841) in Healthy Subjects and Patients With Plaque Psoriasis , 2018, Journal of clinical pharmacology.

[8]  Alan Menter,et al.  Anti‐IL‐23 and Anti‐IL‐17 Biologic Agents for the Treatment of Immune‐Mediated Inflammatory Conditions , 2018, Clinical pharmacology and therapeutics.

[9]  Adam R. Johnson,et al.  Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity , 2016, Science Translational Medicine.

[10]  M. Varma,et al.  Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS) , 2015, Pharmaceutical Research.

[11]  J. Telliez,et al.  ATP-mediated kinome selectivity: the missing link in understanding the contribution of individual JAK Kinase isoforms to cellular signaling. , 2014, ACS chemical biology.

[12]  Mark E Flanagan,et al.  Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. , 2014, Journal of medicinal chemistry.

[13]  M. Dowty,et al.  Preclinical to Clinical Translation of Tofacitinib, a Janus Kinase Inhibitor, in Rheumatoid Arthritis , 2014, The Journal of Pharmacology and Experimental Therapeutics.

[14]  Li Di,et al.  Development of a new permeability assay using low-efflux MDCKII cells. , 2011, Journal of pharmaceutical sciences.

[15]  R. Obach Predicting clearance in humans from in vitro data. , 2011, Current topics in medicinal chemistry.

[16]  J. Fridman,et al.  Selective Inhibition of JAK1 and JAK2 Is Efficacious in Rodent Models of Arthritis: Preclinical Characterization of INCB028050 , 2010, The Journal of Immunology.

[17]  H. Kantarjian,et al.  Preclinical characterization of the selective JAK1/2 inhibitor INCB018424: therapeutic implications for the treatment of myeloproliferative neoplasms. , 2010, Blood.

[18]  D. N. Bobrov,et al.  Stereochemistry of the Kulinkovich cyclopropanation of nitriles. , 2009, The Journal of organic chemistry.

[19]  Bill J Smith,et al.  Prediction of Human Pharmacokinetics From Preclinical Information: Comparative Accuracy of Quantitative Prediction Approaches , 2009, Journal of clinical pharmacology.

[20]  M. Hegen,et al.  Utility of animal models for identification of potential therapeutics for rheumatoid arthritis , 2007, Annals of the rheumatic diseases.

[21]  Clifford Liongue,et al.  Cytokine receptor signaling through the Jak-Stat-Socs pathway in disease. , 2007, Molecular immunology.