The admissible portfolio selection problem with transaction costs and an improved PSO algorithm

In this paper, we discuss the portfolio selection problem with transaction costs under the assumption that there exist admissible errors on expected returns and risks of assets. We propose a new admissible efficient portfolio selection model and design an improved particle swarm optimization (PSO) algorithm because traditional optimization algorithms fail to work efficiently for our proposed problem. Finally, we offer a numerical example to illustrate the proposed effective approaches and compare the admissible portfolio efficient frontiers under different constraints.

[1]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[2]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[3]  Kin Keung Lai,et al.  A class of linear interval programming problems and its application to portfolio selection , 2002, IEEE Trans. Fuzzy Syst..

[4]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[5]  Silvio Giove,et al.  An interval portfolio selection problem based on regret function , 2006, Eur. J. Oper. Res..

[6]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[7]  Cheng-Yan Kao,et al.  Applying Family Competition to Evolution Strategies for Constrained Optimization , 1997, Evolutionary Programming.

[8]  Wei-Guo Zhang,et al.  On admissible efficient portfolio selection problem , 2004, Appl. Math. Comput..

[9]  Sergio Gómez,et al.  Portfolio selection using neural networks , 2005, Comput. Oper. Res..

[10]  Jaroslava Hlouskova,et al.  The efficient frontier for bounded assets , 2000, Math. Methods Oper. Res..

[11]  J. Vörös,et al.  Portfolio analysis--an analytic derivation of the efficient portfolio frontier , 1986 .

[12]  Imre Kondor,et al.  Estimated correlation matrices and portfolio optimization , 2003, cond-mat/0305475.

[13]  Lijian Chen,et al.  Mathematical programming models for revenue management under customer choice , 2010, Eur. J. Oper. Res..

[14]  Peijun Guo,et al.  Portfolio selection based on fuzzy probabilities and possibility distributions , 2000, Fuzzy Sets Syst..

[15]  Jong-Shi Pang,et al.  A New and Efficient Algorithm for a Class of Portfolio Selection Problems , 1980, Oper. Res..

[16]  Masaaki Ida Portfolio selection problem with interval coefficients , 2003, Appl. Math. Lett..

[17]  Wei-Guo Zhang,et al.  On admissible efficient portfolio selection: Models and algorithms , 2006, Appl. Math. Comput..

[18]  A. Yoshimoto THE MEAN-VARIANCE APPROACH TO PORTFOLIO OPTIMIZATION SUBJECT TO TRANSACTION COSTS , 1996 .

[19]  Shuhong Fang A Mean–variance analysis of arbitrage portfolios , 2007 .

[20]  Wei-Guo Zhang,et al.  On admissible efficient portfolio selection policy , 2005, Appl. Math. Comput..

[21]  Kin Keung Lai,et al.  A model for portfolio selection with order of expected returns , 2000, Comput. Oper. Res..

[22]  Yves Crama,et al.  Simulated annealing for complex portfolio selection problems , 2003, Eur. J. Oper. Res..

[23]  G. Mitra,et al.  Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints , 2001 .

[24]  André F. Perold,et al.  Large-Scale Portfolio Optimization , 1984 .

[25]  Wei-Guo Zhang,et al.  An analytic derivation of admissible efficient frontier with borrowing , 2008, Eur. J. Oper. Res..

[26]  Maria Grazia Speranza,et al.  A heuristic algorithm for a portfolio optimization model applied to the Milan stock market , 1996, Comput. Oper. Res..

[27]  D. ArnottRobert,et al.  The Measurement and Control of Trading Costs , 1990 .