An approach to symmetrization via polarization

We prove that the Steiner symmetrization of a function can be approximated in L p (R n ) by a sequence of very simple rearrangements which are called polarizations. This result is exploited to develop elementary proofs of many inequalities, including the isoperimetric inequality in Euclidean space. In this way we also obtain new symmetry results for solutions of some varia- tional problems. Furthermore we compare the solutions of two boundary value problems, one of them having a "polarized" geometry and we show some point- wise inequalities between the solutions. This leads to new proofs of well-known functional inequalities which compare the solutions of two elliptic or parabolic problems, one of them having a "Steiner-symmetrized" geometry. The method also allows us to investigate the case of equality in the inequalities. Roughly speaking we prove that the equality sign is valid only if the original problem has the symmetrized geometry.

[1]  Continuous symmetrization of sets , 1992 .

[2]  E. Schmidt Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. I , 1948 .

[3]  B. A. Taylor,et al.  Spherical rearrangements, subharmonic functions, and $\ast$-functions in $n$-space , 1976 .

[4]  A. Baernstein Integral means, univalent functions and circular symmetrization , 1974 .

[5]  E. Lieb,et al.  A general rearrangement inequality for multiple integrals , 1974 .

[6]  Pierre-Louis Lions,et al.  On optimization problems with prescribed rearrangements , 1989 .

[7]  G. Talenti The Standard Isoperimetric Theorem , 1993 .

[8]  M. Mimura,et al.  Relaxation oscillations in combustion models of thermal self-ignition , 1992 .

[9]  Elliott H. Lieb,et al.  A General Rearrangement Inequality for Multiple Integrals , .

[10]  G. Talenti,et al.  Best constant in Sobolev inequality , 1976 .

[11]  Spherical symmetrization in the theory of elliptic partial differential equations , 1983 .

[12]  M. Essén,et al.  On some questions of uniqueness in the theory of symmetrization , 1979 .

[13]  F. Smithies Linear Operators , 2019, Nature.

[14]  P. Lions,et al.  Equations elliptiques et symétrisation de Steiner , 1992 .

[15]  Ura Cnrs,et al.  Continuity with respect to the domain for the Laplacian : a survey , 1994 .

[16]  P. Lions,et al.  Comparison results for elliptic and parabolic equations via symmetrization: a new approach , 1991, Differential and Integral Equations.

[17]  J. Sarvas Symmetrization of condensers in n-space , 1973 .

[18]  V. Dubinin Capacities and geometric transformations of subsets inn-space , 1993 .

[19]  P. Rosenbloom,et al.  Rearrangements of functions , 1986 .

[20]  S. Superiore,et al.  Some remarks on a result of Talenti , 1988 .

[21]  Allen Weitsman Symmetrization and the Poincare metric , 1986 .

[22]  Henri Berestycki,et al.  On the method of moving planes and the sliding method , 1991 .

[23]  V. Wolontis Properties of Conformal Invariants , 1952 .

[24]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[25]  E. N. Dancer Some notes on the method of moving planes , 1992, Bulletin of the Australian Mathematical Society.

[26]  Pierre-Louis Lions,et al.  Comparison results for elliptic and parabolic equations via Schwarz symmetrization , 1990 .

[27]  Jozef Kačur,et al.  Method of rothe in evolution equations , 1986 .

[28]  G. Pólya,et al.  Isoperimetric inequalities in mathematical physics , 1951 .

[29]  Bernhard Kawohl,et al.  Rearrangements and Convexity of Level Sets in PDE , 1985 .

[30]  V. Dubinin Symmetrization in the geometric theory of functions of a complex variable , 1994 .

[31]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[32]  A. Friedman Variational principles and free-boundary problems , 1982 .

[33]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[34]  G. Talenti,et al.  Elliptic equations and rearrangements , 1976 .

[35]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[36]  W. Beckner Sobolev inequalities, the Poisson semigroup, and analysis on the sphere Sn. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[37]  H. Keller,et al.  Some Positone Problems Suggested by Nonlinear Heat Generation , 1967 .