Life Cycle Assessment (LCA) methodology evaluates holistically the environmental consequences of a product system or activity, by quantifying the energy and materials used, the wastes released to the environment, and assessing the environmental impacts of those energy, materials and wastes. Despite the international focus on environmental impact and LCA, the quality of the underlying life cycle inventory data is at least as, if not more, important than the more qualitative LCA process.This work presents an option to generate gate-to-gate life cycle information of chemical substances, based on a transparent methodology of chemical engineering process design (an ab initio approach). In the broader concept of a Life Cycle Inventory (LCI), the information of each gate-to-gate module can be linked accordingly in a production chain, including the extraction of raw materials, transportation, disposal, reuse, etc. to provide a full cradle to gate evaluation. The goal of this article is to explain the methodology rather than to provide a tutorial on the techniques used. This methodology aims to help the LCA practitioner to obtain a fair and transparent estimate of LCI data when the information is not readily available from industry or literature. Results of gate-to-gate life cycle information generated using the cited methodology are presented as a case study.It has been our experience that both LCI and LCA information provide valuable means of understanding the net environmental consequence of any technology. The LCI information from this methodology can be used more directly in exploring engineering and chemistry changes to improve manufacturing processes. The LCA information can be used to set broader policy and to look at more macro improvements for the environment.
[1]
Henry J. Sandler,et al.
Practical Process Engineering: A Working Approach to Plant Design
,
1987
.
[2]
R. Steiner,et al.
Kirk‐Othmer: Encyclopedia of Chemical Technology. Vol. 1. A to Alkanolamines. Herausgegeben von H. F. Mark, D. F. Othmer, C. G. Overberger und G. T. Seaborg. John Wiley & Sons, London 1978. 3. Aufl., XXIX, 967 S., geb. 7pound; 50.00
,
1979
.
[3]
M. Hauschild,et al.
Environmental assessment of products
,
1997
.
[4]
Donald R. Woods.
Process Design and Engineering Practice
,
1994
.
[5]
Robert Noyes.
Ammonia and synthesis gas
,
1967
.