Simulation and optimization of dynamic flux balance analysis models using an interior point method reformulation

Abstract This work presents a novel, differentiable, way of solving dynamic Flux Balance Analysis (dFBA) problems by embedding flux balance analysis of metabolic network models within lumped bulk kinetics for biochemical processes. The proposed methodology utilizes transformation of the bounds of the embedded linear programming problem of flux balance analysis via a logarithmic barrier (interior point) approach. By exploiting the first-order optimality conditions of the interior-point problem, and with further transformations, the approach results in a system of implicit ordinary differential equations. Results from four case studies, show that the CPU and wall-times obtained using the proposed method are competitive with existing state-of-the art approaches for solving dFBA simulations, for problem sizes up to genome-scale. The differentiability of the proposed approach allows, using existing commercial packages, its application to the optimal control of dFBA problems at a genome-scale size, thus outperforming existing formulations as shown by two dynamic optimization case studies.

[1]  Jonathan Currie,et al.  Opti: Lowering the Barrier Between Open Source Optimizers and the Industrial MATLAB User , 2012 .

[2]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[3]  Renato D. C. Monteiro,et al.  Interior path following primal-dual algorithms. part I: Linear programming , 1989, Math. Program..

[4]  L. Lynd,et al.  Cellulosic ethanol: status and innovation. , 2017, Current opinion in biotechnology.

[5]  T. Lu,et al.  Inverses of 2 × 2 block matrices , 2002 .

[6]  Adam M. Feist,et al.  Next-generation genome-scale models for metabolic engineering. , 2015, Current opinion in biotechnology.

[7]  Sudhakar Jonnalagadda,et al.  Reconstruction and analysis of a genome-scale metabolic model for Scheffersomyces stipitis , 2012, Microbial Cell Factories.

[8]  Eduardo Agosin,et al.  Expanding a dynamic flux balance model of yeast fermentation to genome-scale , 2011, BMC Systems Biology.

[9]  N. Megiddo Progress in Mathematical Programming: Interior-Point and Related Methods , 2011 .

[10]  Adam M. Feist,et al.  A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information , 2007, Molecular systems biology.

[11]  Jeffrey D Orth,et al.  What is flux balance analysis? , 2010, Nature Biotechnology.

[12]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[13]  B. Palsson,et al.  Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. , 1992, Journal of theoretical biology.

[14]  N. Megiddo Pathways to the optimal set in linear programming , 1989 .

[15]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[16]  Wolfgang Wiechert,et al.  Dynamic flux balance analysis with nonlinear objective function , 2017, Journal of Mathematical Biology.

[17]  B. Palsson,et al.  Characterizing the metabolic phenotype: A phenotype phase plane analysis , 2002, Biotechnology and bioengineering.

[18]  M. A. Henson,et al.  Genome‐scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed‐batch culture , 2007, Biotechnology and bioengineering.

[19]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[20]  René Schenkendorf,et al.  Model-based optimization of biopharmaceutical manufacturing in Pichia pastoris based on dynamic flux balance analysis , 2018, Comput. Chem. Eng..

[21]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[22]  Costas D. Maranas,et al.  OptCom: A Multi-Level Optimization Framework for the Metabolic Modeling and Analysis of Microbial Communities , 2012, PLoS Comput. Biol..

[23]  Lorenz T. Biegler,et al.  MPEC problem formulations and solution strategies with chemical engineering applications , 2008, Comput. Chem. Eng..

[24]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[25]  M. Ladisch,et al.  Evaluation of a kinetic model for computer simulation of growth and fermentation by Scheffersomyces (Pichia) stipitis fed D‐xylose , 2014, Biotechnology and bioengineering.

[26]  Michael A Henson,et al.  Optimization of Fed‐Batch Saccharomyces cerevisiae Fermentation Using Dynamic Flux Balance Models , 2006, Biotechnology progress.

[27]  Paul I. Barton,et al.  Efficient solution of ordinary differential equations with a parametric lexicographic linear program embedded , 2015, Numerische Mathematik.

[28]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[29]  Ronan M. T. Fleming,et al.  Reconstruction and Use of Microbial Metabolic Networks: the Core Escherichia coli Metabolic Model as an Educational Guide. , 2010, EcoSal Plus.

[30]  B. Palsson,et al.  An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) , 2003, Genome Biology.

[31]  Lorenz T. Biegler,et al.  An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs) , 2005, SIAM J. Optim..

[32]  Paul I. Barton,et al.  DFBAlab: a fast and reliable MATLAB code for dynamic flux balance analysis , 2014, BMC Bioinformatics.

[33]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[34]  Lorenz T. Biegler,et al.  Modeling and simulation of metabolic networks for estimation of biomass accumulation parameters , 2009, Discret. Appl. Math..

[35]  P I Barton,et al.  A reliable simulator for dynamic flux balance analysis , 2013, Biotechnology and bioengineering.

[36]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[37]  Jungoh Ahn,et al.  Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement , 2010, Microbial cell factories.

[38]  Zhao Zhang,et al.  Genome-scale metabolic model in guiding metabolic engineering of microbial improvement , 2012, Applied Microbiology and Biotechnology.

[39]  Lorenz T. Biegler,et al.  Parameter estimation in metabolic flux balance models for batch fermentation—Formulation & Solution using Differential Variational Inequalities (DVIs) , 2006, Ann. Oper. Res..