Effect of discretization order on preconditioning and convergence of a high-order unstructured Newton-GMRES solver for the Euler equations

This article studies the effect of discretization order on preconditioning and convergence of a high-order Newton-Krylov unstructured flow solver. The generalized minimal residual (GMRES) algorithm is used for inexactly solving the linear system arising from implicit time discretization of the governing equations. A first-order Jacobian is used as the preconditioning matrix. The complete lower-upper factorization (LU) and an incomplete lower-upper factorization (ILU(4)) techniques are employed for preconditioning of the resultant linear system. The solver performance and the conditioning of the preconditioned linear system have been compared in detail for second, third, and fourth-order accuracy. The conditioning and eigenvalue spectrum of the preconditioned system are examined to investigate the quality of preconditioning.

[1]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[2]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[3]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[4]  C. Ollivier-Gooch Quasi-ENO Schemes for Unstructured Meshes Based on Unlimited Data-Dependent Least-Squares Reconstruction , 1997 .

[5]  C. Ollivier-Gooch,et al.  Limiters for Unstructured Higher-Order Accurate Solutions of the Euler Equations , 2008 .

[6]  M. Delanaye,et al.  DEVELOPMENT AND APPLICATION OF QUADRATIC RECONSTRUCTION SCHEMES FOR COMPRESSIBLE FLOWS ON UNSTRUCTURED ADAPTIVE GRIDS , 1997 .

[7]  David W. Zingg,et al.  Efficient Newton-Krylov Solver for Aerodynamic Computations , 1998 .

[8]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[9]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[10]  Carl Ollivier-Gooch,et al.  A High-Order Accurate Unstructured Newton-Krylov Solver for Inviscid Compressible Flows , 2006 .

[11]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[12]  David W. Zingg,et al.  Higher-order spatial discretization for turbulent aerodynamic computations , 2001 .

[13]  Stuart E. Rogers,et al.  Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .

[14]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[15]  Rémi Abgrall,et al.  Design of an Essentially Nonoscillatory Reconstruction Procedure on Finite-Element-Type Meshes , 1991 .

[16]  Carl Ollivier-Gooch,et al.  On Preconditioning of Newton-GMRES algorithm for a Higher-Order Accurate Unstructured Solver , 2006 .

[17]  Curtis R. Mitchell,et al.  Practical aspects of spatially high-order accurate methods , 1993 .

[18]  Dimitri J. Mavriplis,et al.  Implicit Solvers for Unstructured Meshes , 1993 .

[19]  Carl Ollivier-Gooch,et al.  A High-Order Accurate Unstructured GMRES Algorithm for Inviscid Compressible Flows , 2005 .

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  D. Zingg,et al.  Fast Newton-Krylov method for unstructured grids , 1998 .

[22]  V. Guinot Approximate Riemann Solvers , 2010 .

[23]  Thomas H. Pulliam,et al.  Comparison of Several Spatial Discretizations for the Navier-Stokes Equations , 1999 .

[24]  Gene H. Golub,et al.  Matrix computations , 1983 .

[25]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[26]  D. Zingg,et al.  A Newton-Krylov Algorithm for the Euler Equations Using Unstructured Grids , 2003 .

[27]  David W. Zingg,et al.  A Three-Dimensional Multi-Block Newton-Krylov Flow Solver for the Euler Equations , 2005 .

[28]  Thomas J. R. Hughes,et al.  A globally convergent matrix-free algorithm for implicit time-marching schemes arising in finite element analysis in fluids , 1991 .

[29]  R. Dembo,et al.  INEXACT NEWTON METHODS , 1982 .

[30]  E. Cuthill,et al.  Reducing the bandwidth of sparse symmetric matrices , 1969, ACM '69.

[31]  C. Ollivier-Gooch,et al.  Differentiability of Slope Limiters on Unstructured Grids , 2022 .

[32]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[33]  Kenneth G. Powell,et al.  An adaptively-refined Cartesian mesh solver for the Euler equations , 1991 .

[34]  J. W. Boerstoel,et al.  Test Cases for Inviscid Flow Field Methods. , 1985 .

[35]  T. Barth,et al.  An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation , 1995 .

[36]  Carl Ollivier-Gooch,et al.  A high-order accurate unstructured finite volume Newton-Krylov algorithm for inviscid compressible flows , 2008, J. Comput. Phys..

[37]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[38]  T. Barth Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations , 1994 .

[39]  R. LeVeque Approximate Riemann Solvers , 1992 .

[40]  David W. Zingg,et al.  Progress in Newton-Krylov methods for aerodynamic calculations , 1997 .

[41]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[42]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[43]  Timothy J. Barth,et al.  Analysis of implicit local linearization techniques for upwind and TVD algorithms , 1987 .

[44]  Amir Nejat,et al.  On Obtaining High-Order Finite-Volume Solutions to the Euler Equations on Unstructured Meshes , 2007 .

[45]  M. Delanaye,et al.  Quadratic-Reconstruction Finite Volume Scheme for Compressible Flows on Unstructured Adaptive Grids , 1997 .

[46]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .