Mesoscale simulation of polymer reaction equilibrium: combining dissipative particle dynamics with reaction ensemble Monte Carlo. I. Polydispersed polymer systems.

We present a mesoscale simulation technique, called the reaction ensemble dissipative particle dynamics (RxDPD) method, for studying reaction equilibrium of polymer systems. The RxDPD method combines elements of dissipative particle dynamics (DPD) and reaction ensemble Monte Carlo (RxMC), allowing for the determination of both static and dynamical properties of a polymer system. The RxDPD method is demonstrated by considering several simple polydispersed homopolymer systems. RxDPD can be used to predict the polydispersity due to various effects, including solvents, additives, temperature, pressure, shear, and confinement. Extensions of the method to other polymer systems are straightforward, including grafted, cross-linked polymers, and block copolymers. To simulate polydispersity, the system contains full polymer chains and a single fractional polymer chain, i.e., a polymer chain with a single fractional DPD particle. The fractional particle is coupled to the system via a coupling parameter that varies between zero (no interaction between the fractional particle and the other particles in the system) and one (full interaction between the fractional particle and the other particles in the system). The time evolution of the system is governed by the DPD equations of motion, accompanied by changes in the coupling parameter. The coupling-parameter changes are either accepted with a probability derived from the grand canonical partition function or governed by an equation of motion derived from the extended Lagrangian. The coupling-parameter changes mimic forward and reverse reaction steps, as in RxMC simulations.

[1]  K. Gubbins,et al.  Effects of supercritical clustering and selective confinement on reaction equilibrium: A molecular simulation study of the esterification reaction , 2003 .

[2]  B. Montgomery Pettitt,et al.  Ideal chemical potential contribution in molecular dynamics simulations of the grand canonical ensemble , 1994 .

[3]  H. Hoefsloot,et al.  Combining Dissipative Particle Dynamics and Monte Carlo Techniques , 1998 .

[4]  Ignacio Pagonabarraga,et al.  Self-consistent dissipative particle dynamics algorithm , 1998 .

[5]  J. Koelman,et al.  Dynamic simulations of hard-sphere suspensions under steady shear , 1993 .

[6]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[7]  Nitash P. Balsara,et al.  Thermodynamics of Polymer Blends , 2007 .

[8]  M. Lísal,et al.  Computer simulation of the thermodynamic properties of high-temperature chemically-reacting plasmas , 2000 .

[9]  William R. Smith,et al.  THE REACTION ENSEMBLE METHOD FOR THE COMPUTER SIMULATION OF CHEMICAL AND PHASE EQUILIBRIA. I: THEORY AND BASIC EXAMPLES , 1994 .

[10]  S. Glotzer,et al.  Computer simulations of block copolymer tethered nanoparticle self-assembly. , 2006, The Journal of chemical physics.

[11]  Berend Smit,et al.  Understanding Molecular Simulation , 2001 .

[12]  Bernard Pettitt,et al.  Grand canonical ensemble molecular dynamics simulations: Reformulation of extended system dynamics approaches , 1997 .

[13]  M. Lísal,et al.  Molecular simulation of multicomponent reaction and phase equilibria in MTBE ternary system , 2000 .

[14]  Máximo Barón,et al.  Definitions of terms relating to reactions of polymers and to functional polymeric materials (IUPAC Recommendations 2003) , 2004 .

[15]  R. Zagórski,et al.  Chemical equilibria in slitlike pores , 2001 .

[16]  William R. Smith,et al.  Chemical Reaction Equilibrium Analysis: Theory and Algorithms , 1982 .

[17]  Wilfred F. van Gunsteren,et al.  A molecular dynamics simulation study of chloroform , 1994 .

[18]  V. Vacek,et al.  REMC computer simulations of the thermodynamic properties of argon and air plasmas , 2002 .

[19]  J. S. Rowlinson,et al.  The Perfect Gas , 1964 .

[20]  D. Smith,et al.  Molecular dynamics simulations in the grand canonical ensemble: Formulation of a bias potential for umbrella sampling , 1999 .

[21]  M. Lísal,et al.  THE REACTION ENSEMBLE METHOD FOR THE COMPUTER SIMULATION OF CHEMICAL AND PHASE EQUILIBRIA. II. THE BR2+CL2+BRCL SYSTEM , 1999 .

[22]  Jozef Bicerano,et al.  Computational modeling of polymers , 1992 .

[23]  D. Smith,et al.  Molecular Dynamics Simulations in the Grand Canonical Ensemble: Application to Clay Mineral Swelling , 1999 .

[24]  B. Montgomery Pettitt,et al.  Dynamic simulations of water at constant chemical potential , 1992 .

[25]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[26]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[27]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[28]  S. Glotzer,et al.  Hydrodynamics and microphase ordering in block copolymers: are hydrodynamics required for ordered phases with periodicity in more than one dimension? , 2004, The Journal of chemical physics.

[29]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[30]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[31]  D. Theodorou,et al.  Accelerating molecular simulations by reversible mapping between local minima. , 2006, The Journal of chemical physics.

[32]  K. Gubbins,et al.  Reactive canonical Monte Carlo : a new simulation technique for reacting or associating fluids , 1994 .

[33]  M. Lísal,et al.  Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores. , 2006, The Journal of chemical physics.

[34]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[35]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[36]  Timothy J. Madden,et al.  Dynamic simulation of diblock copolymer microphase separation , 1998 .

[37]  E. Maginn,et al.  Isomolar semigrand ensemble molecular dynamics: development and application to liquid-liquid equilibria. , 2005, The Journal of chemical physics.

[38]  K. Gubbins,et al.  Influence of chemical and physical surface heterogeneity on chemical reaction equilibria in carbon micropores , 2001 .

[39]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[40]  William R. Smith,et al.  Molecular simulations of aqueous electrolyte solubility: 1. The expanded-ensemble osmotic molecular dynamics method for the solution phase. , 2005, The journal of physical chemistry. B.

[41]  Shiping Huang,et al.  Monte Carlo simulation for chemical reaction equilibrium of ammonia synthesis in MCM-41 pores and pillared clays , 2005 .

[42]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[43]  K. Gubbins,et al.  Effect of confinement on chemical reaction equilibria: The reactions 2NO⇔(NO)2 and N2+3H2⇔2NH3 in carbon micropores , 2001 .

[44]  B. Rice,et al.  Molecular simulation of shocked materials using the reactive Monte Carlo method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  K. Gubbins,et al.  Effect of confinement by porous materials on chemical reaction kinetics , 2002 .

[46]  P. Attard,et al.  Grand canonical molecular dynamics , 2003 .

[47]  E. A. Colbourn Computer Simulation of Polymers , 1994 .

[48]  F. Keil,et al.  Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system. , 2005, The Journal of chemical physics.

[49]  B. Montgomery Pettitt,et al.  Grand molecular dynamics: A method for open systems , 1991 .

[50]  C. Turner Monte Carlo simulation of equilibrium reactions at vapor-liquid interfaces. , 2005, The journal of physical chemistry. B.

[51]  Bruce J. Palmer,et al.  Alternative Hamiltonian for molecular dynamics simulations in the grand canonical ensemble , 1995 .

[52]  A. G. Schlijper,et al.  Simulation of a confined polymer in solution using the dissipative particle dynamics method , 1994 .

[53]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[54]  R. Roe Computer simulation of polymers , 1991 .

[55]  Ivo Nezbeda,et al.  The Use of Control Quantities in Computer Simulation Experiments: Application to the Exp-6 Potential Fluid , 1995 .

[56]  A. G. Schlijper,et al.  Computer simulation of dilute polymer solutions with the dissipative particle dynamics method , 1995 .