Combined Effects of Rotating Magnetic Field and Rotating System on the Thermocapillary Instability in the Floating Zone Crystal Growth Process

We present a linear stability analysis for the thermocapillary convection in a liquid bridge bounded by two planar liquid-solid interfaces at the same temperature and by a cylindrical free surface with an axisymmetric heat input. The two solid boundaries are rotated at the same angular velocity in one azimuthal direction, and a rotating magnetic field is applied in the opposite azimuthal direction. The critical values of the Reynolds number for the thermocapillary convection and the critical-mode frequencies are presented as functions of the magnetic Taylor number for the rotating magnetic field and of the Reynolds number for the angular velocity of the solid boundaries