Filaments and ridges in Vela C revealed by Herschel: from low-mass to high-mass star-forming sites

We present the first Herschel PACS and SPIRE results of the Vela C molecular complex in the far-infrared and submillimetre regimes at 70, 160, 250, 350, and 500 um, spanning the peak of emission of cold prestellar or protostellar cores. Column density and multi-resolution analysis (MRA) differentiates the Vela C complex into five distinct sub-regions. Each sub-region displays differences in their column density and temperature probability distribution functions (PDFs), in particular, the PDFs of the 'Centre-Ridge' and 'South-Nest' sub-regions appear in stark contrast to each other. The Centre-Ridge displays a bimodal temperature PDF representative of hot gas surrounding the HII region RCW 36 and the cold neighbouring filaments, whilst the South-Nest is dominated by cold filamentary structure. The column density PDF of the Centre-Ridge is flatter than the South-Nest, with a high column density tail, consistent with formation through large-scale flows, and regulation by self-gravity. At small to intermediate scales MRA indicates the Centre-Ridge to be twice as concentrated as the South-Nest, whilst on larger scales, a greater portion of the gas in the South-Nest is dominated by turbulence than in the Centre-Ridge. In Vela C, high-mass stars appear to be preferentially forming in ridges, i.e., dominant high column density filaments.

[1]  M.Griffin,et al.  The Herschel view of star formation in the Rosette molecular cloud under the influence of NGC 2244 , 2010, 1005.3924.

[2]  T. K. Sridharan,et al.  High-Mass Proto-Stellar Candidates - II : Density structure from dust continuum and CS emission , 2001, astro-ph/0110370.

[3]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[4]  S. Bontemps,et al.  W43: the closest molecular complex of the Galactic bar? , 2011, 1102.3460.

[5]  M. Sauvage,et al.  The Aquila prestellar core population revealed by Herschel , 2010, 1005.2981.

[6]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[7]  S. Longmore,et al.  Physical characterization of southern massive star-forming regions using Parkes NH3 observations , 2009, 0911.4479.

[8]  P. Andre',et al.  Origin of the prestellar core mass function and link to the IMF – Herschel first results , 2010, Proceedings of the International Astronomical Union.

[9]  V. Minier,et al.  Millimetre continuum observations of southern massive star formation regions. I. SIMBA observations of cold cores , 2005, astro-ph/0506402.

[10]  James J. Bock,et al.  BLAST: THE MASS FUNCTION, LIFETIMES, AND PROPERTIES OF INTERMEDIATE MASS CORES FROM A 50 deg2 SUBMILLIMETER GALACTIC SURVEY IN VELA (ℓ ≈ 265°) , 2009, 0904.1207.

[11]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[12]  S. Bontemps,et al.  Gas dynamics in Massive Dense Cores in Cygnus-X (Csengeri+, 2011) , 2010, 1009.0598.

[13]  Garry Robinson,et al.  Studies of ultracompact H ii regions — II. High-resolution radio continuum and methanol maser survey , 1998 .

[14]  A. Whitworth,et al.  Protostellar collapse induced by compression , 2002, astro-ph/0206044.

[15]  W. Reach,et al.  The First Detection of Dust Emission in a High-Velocity Cloud , 2005, astro-ph/0508154.

[16]  H. Bischof,et al.  The Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory , 2010, 1005.1487.

[17]  Peter G. Martin,et al.  Dust temperature tracing the ISRF intensity in the Galaxy , 2010 .

[18]  J. Rathborne,et al.  The Detection of Protostellar Condensations in Infrared Dark Cloud Cores , 2007 .

[19]  W. Bonnar,et al.  Boyle's Law and gravitational instability , 1956 .

[20]  Y. Fukui,et al.  A Study of Dense Molecular Gas and Star Formation toward the Vela Molecular Ridge with NANTEN , 1999 .

[21]  Ralf S. Klessen One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-gravitating Media , 2000 .

[22]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[23]  Stanford,et al.  Dynamic star formation in the massive DR21 filament , 2010, 1003.4198.

[24]  M. Sauvage,et al.  Initial highlights of the HOBYS key program , the Herschel imaging survey of OB young stellar objects Journal Item , 2018 .

[25]  M. Sauvage,et al.  Star formation triggered by the Galactic HII region RCW 120: First results from the Herschel Space Observatory , 2010, 1005.1615.

[26]  M. Sauvage,et al.  Herschel observations of embedded protostellar clusters in the Rosette Molecular Cloud , 2010, 1005.3118.

[27]  R. Klessen,et al.  Comparing the statistics of interstellar turbulence in simulations and observations - Solenoidal versus compressive turbulence forcing , 2009, 0905.1060.

[28]  P. McGehee,et al.  Galactic cold cores: II. Herschel study of the extended dust emission around the first: Planck detections , 2011, 1101.3003.

[29]  T. Sousbie The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.

[30]  F. Motte,et al.  From Massive Protostars to a Giant H II Region: Submillimeter Imaging of the Galactic Ministarburst W43 , 2002, astro-ph/0208519.

[31]  S. Bontemps,et al.  The earliest phases of high-mass star formation: a 3 square degree millimeter continuum mapping of Cygnus X , 2007, 0708.2774.

[32]  M. Sauvage,et al.  Small-scale structure in the Rosette molecular cloud revealed by Herschel , 2010, 1005.3784.

[33]  C. Pichon,et al.  The persistent cosmic web and its filamentary structure II: Illustrations , 2010, 1009.4014.

[34]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[35]  C. Pinte,et al.  Spectral energy distribution modelling of southern candidate massive protostars using the Bayesian inference method , 2008, 0810.3158.

[36]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[37]  C. McKee,et al.  A minimum column density of 1 g cm-2 for massive star formation , 2008, Nature.

[38]  F. Massi,et al.  Star formation in the Vela molecular clouds. V. Young stellar objects and star clusters towards the C-cloud , 2003 .

[39]  M. Tamura,et al.  Deep Near-Infrared Imaging toward the Vela Molecular Ridge C. I. A Remarkable Embedded Cluster in RCW 36 , 2004 .

[40]  M. Sauvage,et al.  Filamentary structures and compact objects in the Aquila and Polaris clouds observed by Herschel , 2010, 1005.3115.