Neural signal processing and closed-loop control algorithm design for an implanted neural recording and stimulation system

A fully autonomous intracranial device is built to continually record neural activities in different parts of the brain, process these sampled signals, decode features that correlate to behaviors and neuropsychiatric states, and use these features to deliver brain stimulation in a closed-loop fashion. In this paper, we describe the sampling and stimulation aspects of such a device. We first describe the signal processing algorithms of two unsupervised spike sorting methods. Next, we describe the LFP time-frequency analysis and feature derivation from the two spike sorting methods. Spike sorting includes a novel approach to constructing a dictionary learning algorithm in a Compressed Sensing (CS) framework. We present a joint prediction scheme to determine the class of neural spikes in the dictionary learning framework; and, the second approach is a modified OSort algorithm which is implemented in a distributed system optimized for power efficiency. Furthermore, sorted spikes and time-frequency analysis of LFP signals can be used to generate derived features (including cross-frequency coupling, spike-field coupling). We then show how these derived features can be used in the design and development of novel decode and closed-loop control algorithms that are optimized to apply deep brain stimulation based on a patient's neuropsychiatric state. For the control algorithm, we define the state vector as representative of a patient's impulsivity, avoidance, inhibition, etc. Controller parameters are optimized to apply stimulation based on the state vector's current state as well as its historical values. The overall algorithm and software design for our implantable neural recording and stimulation system uses an innovative, adaptable, and reprogrammable architecture that enables advancement of the state-of-the-art in closed-loop neural control while also meeting the challenges of system power constraints and concurrent development with ongoing scientific research designed to define brain network connectivity and neural network dynamics that vary at the individual patient level and vary over time.

[1]  R. Quiroga Spike sorting , 2012, Current Biology.

[2]  Joel A. Tropp,et al.  Simultaneous sparse approximation via greedy pursuit , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[3]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[4]  M S Lewicki,et al.  A review of methods for spike sorting: the detection and classification of neural action potentials. , 1998, Network.

[5]  Dejan Markovic,et al.  Spike Sorting: The First Step in Decoding the Brain: The first step in decoding the brain , 2012, IEEE Signal Processing Magazine.

[6]  Ueli Rutishauser,et al.  Online detection and sorting of extracellularly recorded action potentials in human medial temporal lobe recordings, in vivo , 2006, Journal of Neuroscience Methods.

[7]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[8]  Vaibhav Karkare,et al.  A 75-µW, 16-Channel Neural Spike-Sorting Processor With Unsupervised Clustering , 2011, IEEE Journal of Solid-State Circuits.

[9]  Dejan Markovic,et al.  Comparison of spike-sorting algorithms for future hardware implementation , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  PROCEssIng magazInE IEEE Signal Processing Magazine , 2004 .