Nonvolatile memory operations using intersubband transitions in GaN/AlN resonant tunneling diodes grown on Si(111) substrates

Nonvolatile memory using intersubband transitions and quantum-well electron accumulation in GaN/AlN resonant tunneling diodes (RTDs) is a promising candidate for high-speed nonvolatile memory operating on a picosecond timescale. This memory has been fabricated on sapphire(0001) substrates to date because of the high affinity between the nitride materials and the substrate. However, the fabrication of this memory on Si(111) substrates is attractive to realize hybrid integration with Si devices and nonvolatile memory and three-dimensional integration such as chip-on-wafer and wafer-on-wafer. In this study, GaN/AlN RTDs are fabricated on a Si(111) substrate using metal-organic vapor phase epitaxy. The large strain caused by the differences in the thermal expansion coefficients and lattice constants between the Si(111) substrate and nitride materials are suppressed by a growth technique based on the insertion of low-temperature-grown AlGaN and thin AlN layers. The GaN/AlN RTDs fabricated on Si(111) substrates show clear GaN/AlN heterointerfaces and a high ON/OFF ratio of >220, which are equivalent to those for devices fabricated on sapphire(0001) substrates. However, the nonvolatile memory characteristics fluctuate by repeated write/erase memory operations. Evaluation of the ON/OFF switching time and endurance characteristics indicates that the instability of the nonvolatile memory characteristics is caused by electron leakage through deep levels in the quantum-well structure. Possible methods for suppressing this are discussed with an aim of realizing high-speed and high-endurance nonvolatile memory.

[1]  M. Shimizu,et al.  Enhancement of nonvolatile memory characteristics caused by GaN/AlN resonant tunneling diodes , 2023, Semiconductor Science and Technology.

[2]  K. Cheng,et al.  Planar AlN/GaN resonant tunneling diodes fabricated using nitrogen ion implantation , 2023, Applied Physics Letters.

[3]  Haris Khan Niazi,et al.  Enabling Next Generation 3D Heterogeneous Integration Architectures on Intel Process , 2022, 2022 International Electron Devices Meeting (IEDM).

[4]  Gene Y. Wu,et al.  SoIC_H Technology for Heterogeneous System Integration , 2022, IEEE Transactions on Electron Devices.

[5]  S. Y. Yang,et al.  High speed (1ns) and low voltage (1.5V) demonstration of 8Kb SOT-MRAM array , 2022, 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).

[6]  Jincheng Zhang,et al.  1039 kA/cm2 peak tunneling current density in GaN-based resonant tunneling diode with a peak-to-valley current ratio of 1.23 at room temperature on sapphire substrate , 2021, Applied Physics Letters.

[7]  Shulong Lu,et al.  Bidirectional negative differential resistance in AlN/GaN resonant tunneling diodes grown on freestanding GaN , 2021, Applied Physics Letters.

[8]  T. Mishima,et al.  Breakdown phenomenon dependences on the number and positions of threading dislocations in vertical p-n junction GaN diodes , 2021 .

[9]  M. Shimizu,et al.  Growth and Characterization of GaN/AlN Resonant Tunneling Diodes for High‐Performance Nonvolatile Memory , 2020, physica status solidi (a).

[10]  M. Radosavljevic,et al.  Gallium Nitride and Silicon Transistors on 300 mm Silicon Wafers Enabled by 3-D Monolithic Heterogeneous Integration , 2020, IEEE Transactions on Electron Devices.

[11]  Lin-An Yang,et al.  Negative differential resistance characteristics of GaN-based resonant tunneling diodes with quaternary AlInGaN as barrier , 2020, Semiconductor Science and Technology.

[12]  T. Mishima,et al.  Extreme reduction of on-resistance in vertical GaN p–n diodes by low dislocation density and high carrier concentration GaN wafers fabricated using oxide vapor phase epitaxy method , 2020, Applied Physics Express.

[13]  M. Shimizu,et al.  Switching characteristics of nonvolatile memory using GaN/AlN resonant tunneling diodes , 2019, Japanese Journal of Applied Physics.

[14]  Masanori Hashimoto,et al.  Low-Power Crossbar Switch With Two-Varistor Selected Complementary Atom Switch (2V-1CAS; Via-Switch) for Nonvolatile FPGA , 2019, IEEE Transactions on Electron Devices.

[15]  W.C. Chiou,et al.  3D Multi-chip Integration with System on Integrated Chips (SoIC™) , 2019, 2019 Symposium on VLSI Technology.

[16]  Huili Grace Xing,et al.  Broken Symmetry Effects due to Polarization on Resonant Tunneling Transport in Double-Barrier Nitride Heterostructures , 2019, Physical Review Applied.

[17]  Jian Zhang,et al.  Repeatable Room Temperature Negative Differential Resistance in AlN/GaN Resonant Tunneling Diodes Grown on Sapphire , 2018, Advanced Electronic Materials.

[18]  M. Shimizu,et al.  Stabilization of nonvolatile memory operations using GaN/AlN resonant tunneling diodes by reducing structural inhomogeneity , 2018, Japanese Journal of Applied Physics.

[19]  Huili Grace Xing,et al.  Room temperature microwave oscillations in GaN/AlN resonant tunneling diodes with peak current densities up to 220 kA/cm2 , 2018 .

[20]  J. Yang,et al.  Threshold Switching of Ag or Cu in Dielectrics: Materials, Mechanism, and Applications , 2018 .

[21]  S. Yuasa,et al.  Reduction in write error rate of voltage-driven dynamic magnetization switching by improving thermal stability factor , 2017 .

[22]  Guido Groeseneken,et al.  200 V Enhancement-Mode p-GaN HEMTs Fabricated on 200 mm GaN-on-SOI With Trench Isolation for Monolithic Integration , 2017, IEEE Electron Device Letters.

[23]  Daishi Inoue,et al.  Performance Improvement of AlN Crystal Quality Grown on Patterned Si(111) Substrate for Deep UV-LED Applications , 2016, Scientific Reports.

[24]  M. Shimizu,et al.  Resistance switching memory operation using the bistability in current–voltage characteristics of GaN/AlN resonant tunneling diodes , 2016 .

[25]  Paul R. Berger,et al.  Highly repeatable room temperature negative differential resistance in AlN/GaN resonant tunneling diodes grown by molecular beam epitaxy , 2016 .

[26]  Ying Wang,et al.  Asymmetric quantum-well structures for AlGaN/GaN/AlGaN resonant tunneling diodes , 2016 .

[27]  Jie Zhang,et al.  Growth of high quality and uniformity AlGaN/GaN heterostructures on Si substrates using a single AlGaN layer with low Al composition , 2016, Scientific Reports.

[28]  H. Belmabrouk,et al.  Self-consistent vertical transport calculations in AlxGa1–xN/GaN based resonant tunneling diode , 2016 .

[29]  D. Wuu,et al.  Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice , 2016 .

[30]  Zhitang Song,et al.  Cr-doped Ge2Sb2Te5 for ultra-long data retention phase change memory , 2015 .

[31]  J. Tominaga,et al.  Femtosecond structural transformation of phase-change materials far from equilibrium monitored by coherent phonons , 2015, Nature Communications.

[32]  Tokio Takahashi,et al.  Investigating the bistability characteristics of GaN/AlN resonant tunneling diodes for ultrafast nonvolatile memory , 2015 .

[33]  H. Hirayama,et al.  Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes , 2014 .

[34]  S. Yuasa,et al.  Spin-transfer torque magnetoresistive random-access memory technologies for normally off computing (invited) , 2014 .

[35]  T. Tokizaki,et al.  Bistability Characteristics of GaN/AlN Resonant Tunneling Diodes Caused by Intersubband Transition and Electron Accumulation in Quantum Well , 2014, IEEE Transactions on Electron Devices.

[36]  A. Ubukata,et al.  Control of Thickness and Composition Variation of AlGaN/GaN on 6- and 8-in. Substrates Using Multiwafer High-Growth-Rate Metal Organic Chemical Vapor Deposition Tool , 2013 .

[37]  T. Egawa,et al.  Uniform Growth of AlGaN/GaN High Electron Mobility Transistors on 200 mm Silicon (111) Substrate , 2013 .

[38]  H. Fujikura,et al.  Hardness control for improvement of dislocation reduction in HVPE-grown freestanding GaN substrates , 2012 .

[39]  Vl. Kolkovsky,et al.  A deep acceptor defect responsible for the yellow luminescence in GaN and AlGaN , 2012 .

[40]  T. Hasegawa,et al.  Atomic Switch: Atom/Ion Movement Controlled Devices for Beyond Von‐Neumann Computers , 2012, Advanced materials.

[41]  H. Hirayama,et al.  Realization of 256–278 nm AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes on Si Substrates Using Epitaxial Lateral Overgrowth AlN Templates , 2011 .

[42]  Y. Kaneko,et al.  A Dual-Channel Ferroelectric-Gate Field-Effect Transistor Enabling nand -Type Memory Characteristics , 2011, IEEE Transactions on Electron Devices.

[43]  K. Terabe,et al.  Forming and switching mechanisms of a cation-migration-based oxide resistive memory , 2010, Nanotechnology.

[44]  T. Hashizume,et al.  Deep Electronic Levels of AlxGa1-xN with a Wide Range of Al Composition Grown by Metal–Organic Vapor Phase Epitaxy , 2010 .

[45]  M. Razeghi,et al.  Demonstration of negative differential resistance in GaN/AlN resonant tunneling diodes at room temperature , 2010 .

[46]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[47]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[48]  Edward T. Yu,et al.  Analysis of leakage current mechanisms in Schottky contacts to GaN and Al0.25Ga0.75N∕GaN grown by molecular-beam epitaxy , 2006 .

[49]  S. Yuasa,et al.  Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions , 2004, Nature materials.

[50]  C. Walle,et al.  Indium versus hydrogen-terminated GaN(0001) surfaces: Surfactant effect of indium in a chemical vapor deposition environment , 2004 .

[51]  James S. Speck,et al.  Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy , 2004 .

[52]  Hongxing Jiang,et al.  Band-edge photoluminescence of AlN epilayers , 2002 .

[53]  S. Denbaars,et al.  Indium-surfactant-assisted growth of high-mobility AlN/GaN multilayer structures by metalorganic chemical vapor deposition , 2001 .

[54]  Osamu Wada,et al.  Ultrafast intersubband relaxation (⩽150 fs) in AlGaN/GaN multiple quantum wells , 2000 .

[55]  James S. Harris,et al.  Intersubband absorption saturation study of narrow III - V multiple quantum wells in the spectral range , 1997 .

[56]  J. Moodera,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[57]  Theeradetch Detchprohm,et al.  Analysis of deep levels in n‐type GaN by transient capacitance methods , 1994 .

[58]  T. Sollner,et al.  Resonant tunneling through quantum wells at frequencies up to 2.5 THz , 1983 .

[59]  Atomic Switch: From Invention to Practical Use and Future Prospects , 2020, Advances in Atom and Single Molecule Machines.

[60]  Christophe Vallée,et al.  Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues , 2017 .

[61]  Hiroshi Nakamura,et al.  Normally-Off Computing , 2017 .

[62]  Baijun Zhang,et al.  Effect of AlN/GaN superlattice buffer on the strain state in GaN-on-Si(111) system , 2014 .

[63]  T. Egawa,et al.  GaN growth on 150-mm-diameter (1 1 1) Si substrates , 2007 .

[64]  J. S. Specka,et al.  Modeling of threading dislocation reduction in growing GaN layers , 2001 .