FOR SEMIDISCRETE OPTIMAL

We study statistical inference for the optimal transport (OT) map (also known as the Brenier map) from a known absolutely continuous reference distribution onto an unknown finitely discrete target distribution. We derive limit distributions for the $L^p$-error with arbitrary $p \in [1,\infty)$ and for linear functionals of the empirical OT map, together with their moment convergence. The former has a non-Gaussian limit, whose explicit density is derived, while the latter attains asymptotic normality. For both cases, we also establish consistency of the nonparametric bootstrap. The derivation of our limit theorems relies on new stability estimates of functionals of the OT map with respect to the dual potential vector, which may be of independent interest. We also discuss applications of our limit theorems to the construction of confidence sets for the OT map and inference for a maximum tail correlation.

[1]  Jonathan Niles-Weed,et al.  Minimax estimation of discontinuous optimal transport maps: The semi-discrete case , 2023, ICML.

[2]  Jonathan Niles-Weed,et al.  Optimal transport map estimation in general function spaces , 2022, 2212.03722.

[3]  Kengo Kato,et al.  Limit Theorems for Entropic Optimal Transport Maps and the Sinkhorn Divergence , 2022, 2207.08683.

[4]  Jean-Michel Loubes,et al.  Weak limits of entropy regularized Optimal Transport; potentials, plans and divergences , 2022, 2207.07427.

[5]  Austin J. Stromme,et al.  On the sample complexity of entropic optimal transport , 2022, 2206.13472.

[6]  G. Carlier,et al.  Convergence rate of general entropic optimal transport costs , 2022, Calculus of Variations and Partial Differential Equations.

[7]  Kengo Kato,et al.  Limit distribution theory for smooth $p$-Wasserstein distances , 2022, 2203.00159.

[8]  Marco Cuturi,et al.  Debiaser Beware: Pitfalls of Centering Regularized Transport Maps , 2022, ICML.

[9]  Jonathan Niles-Weed,et al.  Entropic estimation of optimal transport maps , 2021, 2109.12004.

[10]  Florian Gunsilius,et al.  An Optimal Transport Approach to Causal Inference , 2021, 2108.05858.

[11]  L. Wasserman,et al.  Plugin Estimation of Smooth Optimal Transport Maps , 2021, 2107.12364.

[12]  Bodhisattva Sen,et al.  Rates of Estimation of Optimal Transport Maps using Plug-in Estimators via Barycentric Projections , 2021, NeurIPS.

[13]  Jonathan Niles-Weed,et al.  Asymptotics for Semidiscrete Entropic Optimal Transport , 2021, SIAM J. Math. Anal..

[14]  Jean-Michel Loubes,et al.  A Central Limit Theorem for Semidiscrete Wasserstein Distances , 2021, 2202.06380.

[15]  Carlos Matrán,et al.  Distribution and quantile functions, ranks and signs in dimension d: A measure transportation approach , 2021, The Annals of Statistics.

[16]  Philippe Rigollet,et al.  Minimax estimation of smooth optimal transport maps , 2021 .

[17]  Yoav Zemel,et al.  An Invitation to Statistics in Wasserstein Space , 2020 .

[18]  Dominic Schuhmacher,et al.  Semi-discrete optimal transport: a solution procedure for the unsquared Euclidean distance case , 2020, Mathematical Methods of Operations Research.

[19]  J. Kitagawa,et al.  Quantitative Stability in the Geometry of Semi-discrete Optimal Transport , 2020, International Mathematics Research Notices.

[20]  J. Beirlant,et al.  Center-outward quantiles and the measurement of multivariate risk , 2019, Insurance: Mathematics and Economics.

[21]  Jonathan Niles-Weed,et al.  Estimation of Wasserstein distances in the Spiked Transport Model , 2019, Bernoulli.

[22]  Marco Cuturi,et al.  Computational Optimal Transport: With Applications to Data Science , 2019 .

[23]  B. Sen,et al.  Multivariate ranks and quantiles using optimal transport: Consistency, rates and nonparametric testing , 2019, The Annals of Statistics.

[24]  Quentin Mérigot,et al.  A Lagrangian Scheme à la Brenier for the Incompressible Euler Equations , 2018, Found. Comput. Math..

[25]  Kengo Kato,et al.  Detailed proof of Nazarov's inequality , 2017, 1711.10696.

[26]  Bruno Lévy,et al.  Notions of optimal transport theory and how to implement them on a computer , 2017, Comput. Graph..

[27]  F. Bach,et al.  Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance , 2017, Bernoulli.

[28]  E. Barrio,et al.  Central limit theorems for empirical transportation cost in general dimension , 2017, The Annals of Probability.

[29]  F. Santambrogio {Euclidean, metric, and Wasserstein} gradient flows: an overview , 2016, 1609.03890.

[30]  Victor Chernozhukov,et al.  Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes , 2016, Journal of the American Statistical Association.

[31]  Q. Mérigot,et al.  A Newton algorithm for semi-discrete optimal transport with storage fees and quantitative convergence of cells , 2019, SIAM J. Optim..

[32]  V. Chernozhukov,et al.  Monge-Kantorovich Depth, Quantiles, Ranks and Signs , 2014, 1412.8434.

[33]  B. Lévy A Numerical Algorithm for L2 Semi-Discrete Optimal Transport in 3D , 2014, 1409.1279.

[34]  G. Carlier,et al.  Vector Quantile Regression , 2014, 1406.4643.

[35]  Andrés Santos,et al.  Inference on Directionally Differentiable Functions , 2014, The Review of Economic Studies.

[36]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.

[37]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[38]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[39]  Mathieu Desbrun,et al.  Blue noise through optimal transport , 2012, ACM Trans. Graph..

[40]  Quentin Mérigot,et al.  A Multiscale Approach to Optimal Transport , 2011, Comput. Graph. Forum.

[41]  Pierre Alliez,et al.  CGAL - The Computational Geometry Algorithms Library , 2011 .

[42]  Marc Henry,et al.  COMONOTONIC MEASURES OF MULTIVARIATE RISKS , 2009, 2102.04175.

[43]  C. Villani Optimal Transport: Old and New , 2008 .

[44]  E. Milman On the role of convexity in isoperimetry, spectral gap and concentration , 2007, 0712.4092.

[45]  Stergios B. Fotopoulos,et al.  All of Nonparametric Statistics , 2007, Technometrics.

[46]  Werner Römisch,et al.  Delta Method, Infinite Dimensional , 2006 .

[47]  Alan David Hutson,et al.  Resampling Methods for Dependent Data , 2004, Technometrics.

[48]  T. Mikami Monge’s problem with a quadratic cost by the zero-noise limit of h-path processes , 2004 .

[49]  José A.F. Machado,et al.  Quantiles for Counts , 2002 .

[50]  Mikhail Lifshits,et al.  Local Properties of Distributions of Stochastic Functionals , 1998 .

[51]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[52]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[53]  Kunio Tanabe,et al.  An exact Cholesky decomposition and the generalized inverse of the variance-covariance matrix of the multinomial distribution, with applications , 1992 .

[54]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[55]  Bojan Mohar,et al.  Eigenvalues, diameter, and mean distance in graphs , 1991, Graphs Comb..

[56]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[57]  Franz Aurenhammer,et al.  Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..

[58]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[59]  R. Dudley The Speed of Mean Glivenko-Cantelli Convergence , 1969 .

[60]  Alexander J. McNeil,et al.  Quantitative Risk Management: Concepts, Techniques and Tools Revised edition , 2015 .

[61]  Filippo Santambrogio,et al.  Optimal Transport for Applied Mathematicians , 2015 .

[62]  Kato Kengo A note on moment convergence of bootstrap M-estimators , 2011 .

[63]  Rüschendorf Ludger,et al.  Law invariant convex risk measures for portfolio vectors , 2006 .

[64]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[65]  O. Mangasarian On Concepts of Directional Differentiability , 2004 .

[66]  E. Ordentlich,et al.  Inequalities for the L1 Deviation of the Empirical Distribution , 2003 .

[67]  Sophie Lambert-Lacroix,et al.  On nonparametric confidence set estimation , 2001 .

[68]  S. Kusuoka On law invariant coherent risk measures , 2001 .

[69]  S. Bobkov Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .

[70]  Franz Aurenhammer,et al.  Minkowski-Type Theorems and Least-Squares Clustering , 1998, Algorithmica.

[71]  C. Houdré,et al.  Isoperimetric constants for product probability measures , 1997 .

[72]  Lutz Diimbgen On nondifferentiable functions and the bootstrap , 1993 .

[73]  L. Evans Measure theory and fine properties of functions , 1992 .

[74]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[75]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[76]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .