Control of chaos: Methods and applications in engineering,

Abstract A survey of the emerging field termed “control of chaos” is given. Several major branches of research are discussed in detail: feedforward or “nonfeedback control” (based on periodic excitation of the system); “OGY method” (based on linearization of the Poincare map), “Pyragas method” (based on a time-delay feedback), traditional control engineering methods including linear, nonlinear and adaptive control, neural networks and fuzzy control. Some unsolved problems concerning the justification of chaos control methods are presented. Other directions of active research such as chaotic mixing, chaotization, etc. are outlined. Applications in various fields of engineering are discussed.

[1]  Li-Qun Chen,et al.  Controlling chaotic attitude motion of spacecraft by the input-output linearization , 2000 .

[2]  T. Liao Observer-based approach for controlling chaotic systems , 1998 .

[3]  Oscar Castillo,et al.  Automated mathematical modelling, simulation and behavior identification of robotic dynamic systems using a new fuzzy-fractal-genetic approach , 1999, Robotics Auton. Syst..

[4]  T. Vincent Control using chaos , 1997 .

[5]  Noboru Sonehara,et al.  Controlling Chaos in Chaotic Neural Networks , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[6]  Fernando J. Muzzio,et al.  The geometry of mixing in 2-d time-periodic chaotic flows , 2000 .

[7]  A. Yu. Zhalnin,et al.  Control of chaos in nonautonomous systems with quasiperiodic excitation , 1999 .

[8]  Nicolaos D. Caranicolas Controlling chaos in map models , 1999 .

[9]  H. Nakajima,et al.  Limitation of generalized delayed feedback control , 1998 .

[10]  Juan Alejandro Valdivia,et al.  Period control of chaotic systems by optimization , 1997 .

[11]  Ira B. Schwartz,et al.  Tracking controlled chaos: Theoretical foundations and applications. , 1997, Chaos.

[12]  Horst Beige,et al.  Ferroelectric Systems with Controlled Chaos , 1997 .

[13]  Alexander L. Fradkov,et al.  Control of Chaos: Methods and Applications. I. Methods , 2003 .

[14]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. I . Fundamentals of digital communications , 1997 .

[15]  Earl H. Dowell,et al.  System identification for the Ott-Grebogi-Yorke controller design , 1997 .

[16]  Furong Gao,et al.  Adaptive control of chaotic continuous-time systems with delay , 1998 .

[17]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[18]  Keiji Konishi,et al.  Stability of extended delayed-feedback control for discrete-time chaotic systems , 1999 .

[19]  Ricardo Chacón Maintenance and Suppression of Chaos by Weak Harmonic Perturbations , 2001 .

[20]  Yoshihiko Nakamura,et al.  Nonlinear behavior and control of a nonholonomic free-joint manipulator , 1997, IEEE Trans. Robotics Autom..

[21]  George C. Mouzouris,et al.  Nonsingleton fuzzy logic systems: theory and application , 1997, IEEE Trans. Fuzzy Syst..

[22]  Riccardo Meucci,et al.  Controlling chaos by negative feedback of subharmonic components , 1997 .

[23]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[24]  Nan-Sheng Huang,et al.  CONTROL AND SYNCHRONIZATION OF DISCRETE-TIME CHAOTIC SYSTEMS VIA VARIABLE STRUCTURE CONTROL TECHNIQUE , 1997 .

[25]  Mannella,et al.  Fluctuations and the energy-optimal control of chaos , 2000, Physical review letters.

[26]  D.H. Van Campen,et al.  Stabilization of Periodic Solutions of Nonlinear Mechanical Systems: Controllability and Stability , 1998 .

[27]  Arndt Klotz,et al.  A small-size neural network for computing with strange attractors , 1999, Neural Networks.

[28]  Guanrong Chen Controlling Chaos and Bifurcations in Engineering Systems , 1999 .

[29]  Abraham Boyarsky,et al.  A new approach to controlling chaotic systems , 1998 .

[30]  Michael Peter Kennedy,et al.  Digital communications using chaos , 2000, Signal Process..

[31]  Ralf Der,et al.  Controlling low‐dimensional chaos: Determination and stabilization of unstable periodic orbits by Kohonen neural nets , 1997 .

[32]  L. Chua,et al.  CLARIFYING CHAOS: EXAMPLES AND COUNTEREXAMPLES , 1996 .

[33]  Ichiro Tsuda,et al.  Noise-induced order , 1983 .

[34]  Po Ki Yuen,et al.  Optimal and adaptive control of chaotic convection—Theory and experiments , 1999 .

[35]  Henning Lenz,et al.  When is OGY Control More Than Just Pole Placement , 1997 .

[36]  Enric Fossas,et al.  Stabilization of periodic orbits of the buck converter by time-delayed feedback , 1999 .

[37]  Celso Grebogi,et al.  Control of Chaotic Impacts , 1997 .

[38]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[39]  Ömer Morgül,et al.  On the control of chaotic systems in Lur'e form by using dither , 1999 .

[40]  Toshimitsu Ushio,et al.  Delayed feedback control with nonlinear estimation in chaotic discrete-time systems , 1998 .

[41]  Xinghuo Yu,et al.  Adaptive control of chaotic dynamical systems using invariant manifold approach , 2000 .

[42]  U. Dressler,et al.  Chaos control with adjustable control times , 1997 .

[43]  Henk Nijmeijer,et al.  c ○ World Scientific Publishing Company ADAPTIVE OBSERVER-BASED SYNCHRONIZATION FOR COMMUNICATION , 1999 .

[44]  Guanrong Chen,et al.  On some controllability conditions for chaotic dynamics control , 1997 .

[45]  Krishnendu Chakrabarty,et al.  Control of chaos in DC-DC converters , 1998 .

[46]  Koji Takahashi,et al.  Mixing performance experiments in impeller stirred tanks subjected to unsteady rotational speeds , 1998 .

[47]  Richard Bellman,et al.  Vibrational control of nonlinear systems , 1984, The 23rd IEEE Conference on Decision and Control.

[48]  N. S. Postnikov STOCHASTICITY OF RELAY SYSTEMS WITH HYSTERESIS , 1998 .

[49]  S. M. Khryashchev Estimation of transport times for chaotic dynamical control systems , 2003, 2003 IEEE International Workshop on Workload Characterization (IEEE Cat. No.03EX775).

[50]  Lima,et al.  Suppression of chaos by resonant parametric perturbations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[51]  Vladimir I. Ponomarenko,et al.  Two-level control of chaos in nonlinear oscillators , 1999 .

[52]  Julio M. Ottino,et al.  Chaotic mixing in a bounded three-dimensional flow , 2000, Journal of Fluid Mechanics.

[53]  Zheng-Ming Ge,et al.  NON-LINEAR DYNAMICS AND CHAOS CONTROL OF A DAMPED SATELLITE WITH PARTIALLY-FILLED LIQUID , 1998 .

[54]  M. Andrecut,et al.  Logistic Map as a Random Number Generator , 1998 .

[55]  R. Bitmead,et al.  Nonlinear Dynamics in Adaptive Control: Chaotic and Periodic Stabilization , 1987 .

[56]  Guanrong Chen,et al.  Chaotifying a stable map via smooth small‐amplitude high‐frequency feedback control , 2000, Int. J. Circuit Theory Appl..

[57]  K. T. Chau,et al.  Experimental stabilization of chaos in a voltage-mode DC drive system , 2000 .

[58]  Fernando J. Muzzio,et al.  Size segregation in vibrated granular systems: A reversible process , 1997 .

[59]  Henk Nijmeijer,et al.  System identification in communication with chaotic systems , 2000 .

[60]  Toshimitsu Ushio,et al.  Control of chaos in switched arrival systems withN buffers , 2000 .

[61]  Alexander L. Fradkov,et al.  VSS-version of energy-based control for swinging up a pendulum , 2001, Syst. Control. Lett..

[62]  M. K. Ali,et al.  PATTERN RECOGNITION IN A NEURAL NETWORK WITH CHAOS , 1998 .

[63]  Alexander N. Pisarchik,et al.  Parametric nonfeedback resonance in period doubling systems , 1999 .

[64]  B. Wigdorowitz,et al.  A priori nonlinear model structure selection for system identification , 1997 .

[65]  Kestutis Pyragas,et al.  Delayed feedback control of chaos by self-adapted delay time , 1995 .

[66]  Aynur Unal,et al.  Control of chaos in nonlinear dynamical systems , 1991 .

[67]  Jerry M. Mendel,et al.  Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-series , 1999, Inf. Sci..

[68]  Andrzej Banaszuk,et al.  Controlling vortex motion and chaotic advection , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[69]  Laurent Larger,et al.  Optical Cryptosystem Based on Synchronization of Hyperchaos Generated by a Delayed Feedback Tunable Laser Diode , 1998 .

[70]  F. W. Schneider,et al.  Recognition in Excitable Chemical Reactor Networks. Experiments and Model-Simulations , 1997 .

[71]  J. Ottino The Kinematics of Mixing: Stretching, Chaos, and Transport , 1989 .

[72]  Antonia J. Jones,et al.  The control of higher dimensional chaos: comparative results for the chaotic satellite attitude control problem , 2000 .

[73]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization , 1998 .

[74]  J C Sprott,et al.  Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[75]  Troy Shinbrot,et al.  Chaotic granular mixing. , 1999, Chaos.

[76]  Teh-Lu Liao,et al.  Adaptive control and synchronization of Lorenz systems , 1999 .

[77]  Guanrong Chen,et al.  Making a dynamical system chaotic: feedback control of Lyapunov exponents for discrete-time dynamical systems , 1997 .

[78]  F. R. Marotto Snap-back repellers imply chaos in Rn , 1978 .

[79]  Ramakrishna Ramaswamy,et al.  TARGETING CHAOS THROUGH ADAPTIVE CONTROL , 1998, chao-dyn/9801024.

[80]  Alexey Pavlov,et al.  Adaptive Control of Recurrent Trajectories Based on linearization of Poincaré Map , 2000, Int. J. Bifurc. Chaos.

[81]  Sudeshna Sinha Controlling chaos in biology , 1997 .

[82]  Kaspar Anton Schindler,et al.  Inhibitory connections enhance pattern recurrence in networks of neocortical pyramidal cells , 1999 .

[83]  Paul Woafo,et al.  Stability and Chaos Control in Electrostatic Transducers , 2000 .

[84]  Eric R. Weeks,et al.  Evolving artificial neural networks to control chaotic systems , 1997 .

[85]  N. Inaba,et al.  OPF chaos control in a circuit containing a feedback voltage pulse generator , 1998 .

[86]  F. T. Arecchi,et al.  Adaptive strategies for recognition, noise filtering, control, synchronization and targeting of chaos. , 1997, Chaos.

[87]  Wolfram Just,et al.  MECHANISM OF TIME-DELAYED FEEDBACK CONTROL , 1996, chao-dyn/9611012.

[88]  H. Qammar,et al.  Control of a chaotic polymerization reaction using linear and nonlinear controllers , 1996 .

[89]  N. M. Ghasem,et al.  Dynamic Behavior of Industrial Gas Phase Fluidized Bed Polyethylene Reactors under PI Control , 2000 .

[90]  Eckehard Schöll,et al.  Handbook of Chaos Control , 2007 .

[91]  Guanrong Chen,et al.  Feedback anticontrol of discrete chaos , 1998 .

[92]  Kotaro Hirasawa,et al.  Universal learning network and its application to chaos control , 2000, Neural Networks.

[93]  Joaquin Alvarez,et al.  Complex dynamics in classical control systems , 1997 .

[94]  Thomas Holzhüter,et al.  Transient Behavior for One-Dimensional ogy Control , 2000, Int. J. Bifurc. Chaos.

[95]  C V Anil Kumar,et al.  Controlling chaotic dynamics of periodically forced spheroids in simple shear flow: Results for an example of a potential application , 1998 .

[96]  A. Stephenson XX. On induced stability , 1908 .

[97]  F. T. Arecchi,et al.  Experimental control of chaos in a delayed high-dimensional system , 1999 .

[98]  Guanrong Chen,et al.  Generalized Predictive Control of Discrete-Time Chaotic Systems , 1998 .

[99]  Florence Raynal,et al.  Energy saving in chaotic laminar mixing , 1997 .

[100]  Antonia J. Jones,et al.  PERIODIC RESPONSE TO EXTERNAL STIMULATION OF A CHAOTIC NEURAL NETWORK WITH DELAYED FEEDBACK , 1999 .

[101]  Tetsushi Ueta,et al.  A method for generating a chaotic attractor by destabilization , 1997 .

[102]  Ying Zhang,et al.  DYNAMIC STORAGE FUNCTION BY CHAOS CONTROL IN A HYBRID BISTABLE SYSTEM , 1998 .

[103]  Luis Antonio Aguirre,et al.  Control of nonlinear Dynamics: where do Models Fit in? , 2000, Int. J. Bifurc. Chaos.

[104]  Yuezhong Tang,et al.  Stable fuzzy adaptive control for a class of nonlinear systems , 1999, Fuzzy Sets Syst..

[105]  Guanrong Chen,et al.  Fuzzy modeling, prediction, and control of uncertain chaotic systems based on time series , 2000 .

[106]  Masanori Sugisaka,et al.  New skill learning paradigm using various kinds of neurons , 1998 .

[107]  J. M. Ottino,et al.  Chaotic mixing of granular materials in two-dimensional tumbling mixers. , 1999, Chaos.

[108]  M. Paskota,et al.  Targeting moving targets in chaotic dynamical systems , 1997 .

[109]  Po Ki Yuen,et al.  Controlling chaotic convection using neural nets--theory and experiments , 1998, Neural Networks.

[110]  Guanrong Chen,et al.  Chaotification via arbitrarily Small Feedback Controls: Theory, Method, and Applications , 2000, Int. J. Bifurc. Chaos.

[111]  Piotr Fronczak,et al.  Limits of time-delayed feedback control , 1999 .

[112]  Guanrong Chen,et al.  Adaptive Control of the Uncertain Duffing Oscillator , 1997 .

[113]  Ying-Cheng Lai,et al.  Encoding Digital Information using Transient Chaos , 2000, Int. J. Bifurc. Chaos.

[114]  Sahjendra N. Singh,et al.  Adaptive Control of Chaos in Lorenz System , 1997 .

[115]  Xinghuo Yu Tracking inherent periodic orbits in chaotic dynamic systems via adaptive variable structure time-delayed self control , 1999 .

[116]  H. G. Schuster,et al.  CONTROL OF CHAOS BY OSCILLATING FEEDBACK , 1997 .

[117]  E. Atlee Jackson,et al.  An open-plus-closed-loop (OPCL) control of complex dynamic systems , 1995 .

[118]  Ramazan Gençay,et al.  Nonlinear modelling and prediction with feedforward and recurrent networks , 1997 .

[119]  Iven M. Y. Mareels,et al.  Non-linear dynamics in adaptive control: Chaotic and periodic stabilization , 1986, Autom..

[120]  Masa-aki Sato,et al.  Associative memory based on parametrically coupled chaotic elements , 1998 .

[121]  E. Hunt Stabilizing high-period orbits in a chaotic system: The diode resonator. , 1991 .

[122]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[123]  Alexander L. Fradkov,et al.  On self-synchronization and controlled synchronization , 1997 .

[124]  D. A. Zumbrunnen,et al.  Production of electrically conducting plastic composites by three‐dimensional chaotic mixing of melts and powder additives , 2000 .

[125]  Zhang Zhibin,et al.  Extended pole placement technique and its applications for targeting unstable periodic orbit , 1998 .

[126]  David H. Owens,et al.  Existence and learning of oscillations in recurrent neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[127]  Guanrong Chen,et al.  On time-delayed feedback control of chaotic systems , 1999 .

[128]  Guanrong Chen,et al.  FEEDBACK CONTROL OF LYAPUNOV EXPONENTS FOR DISCRETE-TIME DYNAMICAL SYSTEMS , 1996 .

[129]  Masahiro Nakagawa,et al.  A Chaos Associative Model with a Sinusoidal Activation Function , 1999 .

[130]  Ying-Cheng Lai,et al.  Controlling chaos in high dimensions , 1997 .

[131]  S. Narayanan,et al.  Chaos Control by Nonfeedback Methods in the Presence of Noise , 1999 .

[132]  Tetsuo Morimoto,et al.  An intelligent control for greenhouse automation, oriented by the concepts of SPA and SFA — an application to a post-harvest process , 2000 .

[133]  A. L. Fradkov,et al.  Adaptive control of oscillatory and chaotic systems based on linearization of Poincaré map , 1997, 1997 European Control Conference (ECC).

[134]  Keiji Konishi,et al.  Observer-based delayed-feedback control for discrete-time chaotic systems , 1998 .

[135]  Henning Lenz,et al.  STABILIZING HIGHER PERIODIC ORBITS OF CHAOTIC DISCRETE-TIME MAPS , 1999 .

[136]  Erik M. Bollt,et al.  Controlling Chaos and the Inverse Frobenius-Perron Problem: Global stabilization of Arbitrary Invariant Measures , 2000, Int. J. Bifurc. Chaos.

[137]  W. Freeman,et al.  Taming chaos: stabilization of aperiodic attractors by noise [olfactory system model] , 1997 .

[138]  Alexander L. Fradkov,et al.  Adaptive synchronization of chaotic systems based on speed gradient method and passification , 1997 .

[139]  Alberto Tesi,et al.  Stabilizing periodic orbits of forced systems via generalized Pyragas controllers , 1997 .

[140]  Nguyen Phong Chau,et al.  Controlling chaos by periodic proportional pulses , 1997 .

[141]  Krishnamurthy Murali,et al.  Control of chaos by nonfeedback methods in a simple electronic circuit system and the FitzHugh-Nagumo equation , 1997 .

[142]  Alistair I. Mees,et al.  Optimal control of nonlinear systems to given orbits , 1997 .

[143]  Alexander L. Fradkov,et al.  Introduction to Control of Oscillations and Chaos , 1998 .

[144]  Y Xue,et al.  CONTROLLING CHAOS SYSTEM BY USING ADAPTIVE FUZZY METHOD BASED ON INPUT-OUTPUT LINEARIZATION , 2000 .

[145]  D. Edwards,et al.  Use of fuzzy logic to calculate the statistical properties of strange attractors in chaotic systems , 1997, Fuzzy Sets Syst..

[146]  H. Abarbanel,et al.  Small force control of nonlinear systems to given orbits , 1997 .

[147]  Liang Chen,et al.  Fuzzy Modeling and Adaptive Control of Uncertain Chaotic Systems , 1999, Inf. Sci..

[148]  Asim Roy,et al.  A neural-network learning theory and a polynomial time RBF algorithm , 1997, IEEE Trans. Neural Networks.

[149]  Alexander L. Fradkov,et al.  Frequency-domain conditions for global synchronization of nonlinear systems driven by a multiharmonic external signal , 1999, 1999 European Control Conference (ECC).

[150]  S. Boccaletti,et al.  ADAPTIVE SYNCHRONIZATION OF CHAOS FOR SECURE COMMUNICATION , 1997 .

[151]  Erik M. Bollt,et al.  Communication with chemical chaos in the presence of noise. , 1998, Chaos.

[152]  M Giona,et al.  Dynamics and relaxation properties of complex systems with memory , 1991 .

[153]  T. Ushio Limitation of delayed feedback control in nonlinear discrete-time systems , 1996 .

[154]  Antonia J. Jones,et al.  Synchronization of Chaotic Maps by Feedback Control and Application to Secure Communications Using Chaotic Neural Networks , 1998 .

[155]  F. T. Arecchi,et al.  Adaptive strategies for recognition, control and synchronization of chaos , 1997 .

[156]  Iven Mareels,et al.  Identification of a 1-dimensional chaotic system: Expectations and limitations for control , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[157]  S. C. Srivastava,et al.  Elimination of dynamic bifurcation and chaos in power systems using FACTS devices , 1998 .

[158]  Visarath In,et al.  Tracking unstable periodic orbits in nonstationary high-dimensional chaotic systems:Method and experiment , 1997 .

[159]  Y. J. Cao A nonlinear adaptive approach to controlling chaotic oscillators , 2000 .

[160]  W L Ditto,et al.  Computing with distributed chaos. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[161]  Shanmuganathan Rajasekar,et al.  Characterization and control of chaotic dynamics in a nerve conduction model equation , 1997 .

[162]  Kok Lay Teo,et al.  Mixed Strategy Global Sub-Optimal Feedback Control for Chaotic Systems , 1997 .

[163]  R Chacón Maintenance and suppression of chaos by weak harmonic perturbations: a unified view. , 2001, Physical review letters.

[164]  E. Abraham,et al.  Control of chaos in discrete Josephson transmission lines , 1997, IEEE Transactions on Applied Superconductivity.

[165]  Masayoshi Inoue,et al.  Self-Organization in a Spin Model of Chaos Neural Network , 2000 .

[166]  E. Solak,et al.  On the Synchronization of Chaos Systems by Using State Observers , 1997 .

[167]  Patrick Patrick Anderson,et al.  An adaptive front tracking technique for three-dimensional transient flows , 2000 .

[168]  Y. Lai,et al.  Controlling chaotic dynamical systems , 1997 .

[169]  Yu-Ping Tian Controlling chaos using invariant manifolds , 1999 .

[170]  Alexander L. Fradkov,et al.  Control of chaos: some open problems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[171]  Alexander S. Poznyak,et al.  Identification and control of unknown chaotic systems via dynamic neural networks , 1999 .

[172]  Ben-Zion Kaplan,et al.  Employing chaos tools and methods in magnetic levitation , 1999 .

[173]  Tao Yang Control of Chaos Using Sampled-Data Feedback Control , 1998 .

[174]  Steven H. Kim,et al.  Nonlinear prediction of manufacturing systems through explicit and implicit data mining , 1997 .

[175]  John Baillieul,et al.  Chaotic motion in nonlinear feedback systems , 1980 .

[176]  Mohamed Belhaq,et al.  Quasi-Periodic Oscillations, Chaos and Suppression of Chaos in a Nonlinear Oscillator Driven by Parametric and External Excitations , 1999 .

[177]  Ying-Cheng Lai,et al.  Control and applications of chaos , 1997 .

[178]  Shuzhi Sam Ge,et al.  Adaptive backstepping Control of a Class of Chaotic Systems , 2000, Int. J. Bifurc. Chaos.

[179]  Alberto Tesi,et al.  Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems , 1992, Autom..

[180]  Wei Wu Nonlinear Bounded Control of a Nonisothermal CSTR , 2000 .

[181]  Andre P. Mazzoleni,et al.  Analytical Criterion for Chaotic Dynamics in Flexible Satellites with Nonlinear Controller Damping , 1998 .

[182]  Jyh-Long Chern,et al.  CONDITIONS TO CONTROL CHAOTIC DYNAMICS BY WEAK PERIODIC PERTURBATION , 1997 .

[183]  Th. Holzhüter,et al.  Control of a Chaotic Relay System Using the OGY Method , 1998 .

[184]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[185]  Domenico D'Alessandro,et al.  Control of mixing in fluid flow: a maximum entropy approach , 1999, IEEE Trans. Autom. Control..

[186]  A. Vikhansky,et al.  Chaotic mixing of granular material in slowly rotating containers as a discrete mapping. , 1999, Chaos.

[187]  Robert Mettin,et al.  Control of Chaotic Maps by Optimized Periodic Inputs , 1998 .

[188]  Reibold,et al.  Influence of stable Floquet exponents on time-delayed feedback control , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[189]  Maciej Ogorzalek,et al.  Identification of chaotic systems based on adaptive synchronization , 1997 .

[190]  D. L. Hill Control of implicit chaotic maps using nonlinear approximations. , 2000, Chaos.

[191]  Philip J. Aston,et al.  Using Control of Chaos to Refine Approximations to periodic Points , 2000, Int. J. Bifurc. Chaos.

[192]  Patrick D. Anderson,et al.  Chaotic fluid mixing in non-quasi-static time-periodic cavity flows , 2000 .

[193]  Alexander L. Fradkov,et al.  Nonlinear Adaptive Control: Regulation-Tracking-Oscillations , 1994 .

[194]  Earl H. Dowell,et al.  On the optimality of the Ott-Grebogi-Yorke control scheme , 1998 .

[195]  Vasileios Basios,et al.  Controlling the onset of homoclinic chaos due to parametric noise , 1999 .

[196]  Toshimitsu Ushio,et al.  Discrete‐time Hogg–Huberman strategy with net bias , 2000 .

[197]  Chang-Keun Yi,et al.  Development of sorbent manufacturing technology by Agitation Fluidized Bed Granulator (AFBG) , 1999 .

[198]  R. W. Rollins,et al.  Characterization and control of chaotic stress oscillations in a model for the portevin-le chÂtelier effect , 1998 .

[199]  Hendrik Richter,et al.  Local Control of Chaotic Systems — A Lyapunov Approach , 1998 .

[200]  Nikola Kasabov,et al.  Integration of connectionist methods and chaotic time‐series analysis for the prediction of process data , 1998 .

[201]  Paul A. Meehan,et al.  Control of chaotic instabilities in a spinning spacecraft with dissipation using Lyapunov's method , 2002 .

[202]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[203]  Visarath In,et al.  Control and synchronization of chaos in high dimensional systems: Review of some recent results. , 1997, Chaos.

[204]  Andrew G. Alleyne REACHABILITY OF CHAOTIC DYNAMIC SYSTEMS , 1998 .

[205]  A. Yu. Loskutov,et al.  Control of a system with a strange attractor through periodic parametric action , 1987 .

[206]  E. M. Shahverdiev,et al.  Instability control in two dimensional traffic flow model , 1999 .

[207]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[208]  Maciej Ogorzalek,et al.  Chaos-Based Signal Processing , 2000, Int. J. Bifurc. Chaos.

[209]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[210]  Matthew A. Franchek,et al.  Robust control of chaotic vibrations for impacting heat exchanger tubes in crossflow , 1999 .

[211]  Guanrong Chen,et al.  On the Relationship between Parametric Variation and State Feedback in Chaos Control , 2002, Int. J. Bifurc. Chaos.

[212]  C Zhou,et al.  Decoding information by following parameter modulation with parameter adaptive control. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[213]  Erik M. Bollt,et al.  Encoding information in chemical chaos by controlling symbolic dynamics , 1997 .

[214]  M. Brucoli,et al.  SYNCHRONIZATION OF HYPERCHAOTIC CIRCUITS VIA CONTINUOUS FEEDBACK CONTROL WITH APPLICATION TO SECURE COMMUNICATIONS , 1998 .

[215]  T. Martin McGinnity,et al.  Predicting a Chaotic Time Series using Fuzzy Neural network , 1998, Inf. Sci..

[216]  Chi K. Tse,et al.  What form of control function can drive a discontinuous-mode boost converter to chaos via period-doubling? , 1998 .

[217]  E. Lüscher,et al.  Resonant stimulation and control of nonlinear oscillators , 1989, Naturwissenschaften.

[218]  Haiyan Hu An adaptive control scheme for recovering periodic motion of chaotic systems , 1997 .

[219]  Gábor Stépán,et al.  Microchaotic Motion of Digitally Controlled Machines , 1998 .

[220]  Tomasz Kapitaniak Chaos for Engineers , 1998 .

[221]  Mirko Paskota,et al.  On modelling and the control of vibroformers in aluminium production , 1998 .

[222]  G. Zames,et al.  Dither in nonlinear systems , 1976 .

[223]  Ricardo Chacón,et al.  Control of Homoclinic Chaos by Weak Periodic Perturbations , 2005 .

[224]  Celso Grebogi,et al.  THE CONTROL OF CHAOS: THEORETICAL SCHEMES AND EXPERIMENTAL REALIZATIONS , 1998 .

[225]  S. Celikovsky,et al.  Chaos synthesis via root locus , 1994 .

[226]  Tong Kun Lim,et al.  An experimental study of storing information in a controlled chaotic system with time-delayed feedback , 1998 .

[227]  Peter Hagedorn,et al.  Invariants of chaotic attractor in a nonlinearly damped system , 1998 .

[228]  Julyan H. E. Cartwright,et al.  Fuzzy Control of Chaos , 1998 .

[229]  István Z. Kiss,et al.  Controlling Chaos with Artificial Neural Network: Numerical Studies and Experiments , 2000 .

[230]  Marco Pettini,et al.  Parametric Resonant Control of Chaos , 1998 .

[231]  Murti V. Salapaka,et al.  Dynamical analysis and control of microcantilevers , 1999, Autom..

[232]  Xinghuo Yu,et al.  Stabilizing unstable periodic orbits of Chaotic Systems with unknown parameters , 2000, Int. J. Bifurc. Chaos.

[233]  B. Joseph,et al.  Chaotic mixing by internal inertia-gravity waves , 1997 .

[234]  Kok Lay Teo,et al.  Directing Orbits of Chaotic Systems in the Presence of Noise: Feedback Correction , 1997 .

[235]  Philippe Chanfreau,et al.  Viewing the Efficiency of Chaos Control , 1999 .

[236]  H. Nakajima On analytical properties of delayed feedback control of chaos , 1997 .

[237]  S. Rinaldi,et al.  Optimal control of chaotic systems via peak-to-peak maps , 2000 .

[238]  Yang Genke,et al.  Stabilization of unstable periodic orbits for a chaotic system , 1999 .

[239]  Rubens Viana Ramos,et al.  CONTROLLING CHAOS IN A NONLINEAR FIBER RING RESONATOR USING FUZZY LOGIC , 1999 .

[240]  Kestutis Pyragas Control of chaos via an unstable delayed feedback controller. , 2001, Physical review letters.

[241]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[242]  Chin-Teng Lin,et al.  A GA-based fuzzy adaptive learning control network , 2000, Fuzzy Sets Syst..

[243]  Cor M. van den Bleek,et al.  Improving conversion and selectivity of catalytic reactions in bubbling gas–solid fluidized bed reactors by control of the nonlinear bubble dynamics , 1999 .

[244]  Toshimitsu Ushio,et al.  Controlling Chaos in a Hogg-Huberman Model of a Manufacturing System , 1998 .

[245]  Julio M. Ottino,et al.  MIXING OF GRANULAR MATERIALS: A TEST-BED DYNAMICAL SYSTEM FOR PATTERN FORMATION , 1999 .

[246]  Guanrong Chen,et al.  Adaptive control of chaotic systems with uncertainties , 1998 .

[247]  Ricardo Femat,et al.  A discrete approach to the control and synchronization of a class of chaotic oscillators , 1999 .

[248]  Pablo Varona,et al.  Nonlinear Cooperative Dynamics of Living Neurons , 2000, Int. J. Bifurc. Chaos.

[249]  Kazuo Tanaka,et al.  A unified approach to controlling chaos via an LMI-based fuzzy control system design , 1998 .

[250]  David J. Christini,et al.  Real-time, adaptive, model-independent control of low-dimensional chaotic and nonchaotic dynamical systems , 1997 .

[251]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[252]  Takashi Hikihara,et al.  An expansion of system with time delayed feedback control into spatio-temporal state space. , 1999, Chaos.

[253]  O. J. Ilegbusi,et al.  Kinematic mixing of two fluids with valve perturbation , 1997 .

[254]  Semyon M. Meerkov,et al.  Vibrational control of nonlinear systems: Vibrational stabilizability , 1986 .

[255]  T. Vincent,et al.  Control of a chaotic system , 1991 .

[256]  Iven M. Y. Mareels,et al.  Non-linear dynamics in adaptive control: Periodic and chaotic stabilization - II. Analysis , 1988, Autom..

[257]  Engin Yaz,et al.  Sliding-Mode Adaptive Observer Approach to Chaotic Synchronization , 2000 .

[258]  Ioannis Antoniou,et al.  Probabilistic control of chaos through small perturbations , 2000 .

[259]  Xinghuo Yu,et al.  Anticontrol of chaos in continuous-time systems via time-delay feedback. , 2000, Chaos.

[260]  J L Lions,et al.  On the controllability of distributed systems. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[261]  Guanrong Chen,et al.  Hybrid state-space fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems , 1999, IEEE Trans. Fuzzy Syst..

[262]  Gábor Stépán,et al.  Controlling Unstable Rolling Phenomena , 2000 .

[263]  M. Pettini Controlling Chaos through parametric excitations , 1990 .

[264]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .