La catégorie cubique avec connexions est une catégorie test stricte
暂无分享,去创建一个
[1] P. J. Higgins. Thin Elements and Commutative Shells in Cubical ω-categories , 2005 .
[2] P. J. Higgins. Thin Elements and Commutative Shells in Cubical omega-categories , 2004, math/0408306.
[3] Marco Grandis. Cubical monads and their symmetries , 1993 .
[4] P. J. Higgins,et al. Colimit theorems for relative homotopy groups , 1981 .
[5] Denis-Charles Cisinski,et al. Les Pr'efaisceaux comme mod`eles des types d''homotopie , 2002 .
[6] A. Tonks. Cubical groups which are Kan , 1992 .
[7] Marco Grandis,et al. CUBICAL SETS AND THEIR SITE , 2003 .
[8] Timothy Porter,et al. Abstract homotopy and simple homotopy theory , 1995 .
[9] Philip S. Hirschhorn. Model categories and their localizations , 2003 .
[10] D. Quillen,et al. Higher algebraic K-theory: I , 1973 .
[11] CUBICAL ABELIAN GROUPS WITH CONNECTIONS ARE EQUIVALENT TO CHAIN COMPLEXES , 2002, math/0212157.
[12] Richard Steiner,et al. Multiple Categories: The Equivalence of a Globular and a Cubical Approach , 2000 .
[13] S. B. Isaacson. Symmetric Cubical Sets , 2009, 0910.4948.
[14] P. J. Higgins,et al. Tensor products and homotopies for ω-groupoids and crossed complexes , 1987 .
[15] Georges Maltsiniotis,et al. La théorie de l'homotopie de grothendieck , 2005 .
[16] P. J. Higgins,et al. On the algebra of cubes , 1981 .
[17] Denis-Charles Cisinski,et al. La catégorie Θ de Joyal est une catégorie test , 2011 .
[18] Rosa Antolini,et al. Geometric Realisations of Cubical Sets with Connections, and Classifying Spaces of Categories , 2002, Appl. Categorical Struct..
[19] D. M. Kan,et al. ABSTRACT HOMOTOPY. , 1955, Proceedings of the National Academy of Sciences of the United States of America.