La catégorie cubique avec connexions est une catégorie test stricte

— The aim of this paper is to prove that the category of cubes with connections, introduced by R. Brown and Ph. J. Higgins, is a strict test category in Grothendieck’s sense. In particular this implies that cubical sets with connections modelize homotopy types in a very precise sense, in a way compatible with the cartesian product.

[1]  P. J. Higgins Thin Elements and Commutative Shells in Cubical ω-categories , 2005 .

[2]  P. J. Higgins Thin Elements and Commutative Shells in Cubical omega-categories , 2004, math/0408306.

[3]  Marco Grandis Cubical monads and their symmetries , 1993 .

[4]  P. J. Higgins,et al.  Colimit theorems for relative homotopy groups , 1981 .

[5]  Denis-Charles Cisinski,et al.  Les Pr'efaisceaux comme mod`eles des types d''homotopie , 2002 .

[6]  A. Tonks Cubical groups which are Kan , 1992 .

[7]  Marco Grandis,et al.  CUBICAL SETS AND THEIR SITE , 2003 .

[8]  Timothy Porter,et al.  Abstract homotopy and simple homotopy theory , 1995 .

[9]  Philip S. Hirschhorn Model categories and their localizations , 2003 .

[10]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .

[11]  CUBICAL ABELIAN GROUPS WITH CONNECTIONS ARE EQUIVALENT TO CHAIN COMPLEXES , 2002, math/0212157.

[12]  Richard Steiner,et al.  Multiple Categories: The Equivalence of a Globular and a Cubical Approach , 2000 .

[13]  S. B. Isaacson Symmetric Cubical Sets , 2009, 0910.4948.

[14]  P. J. Higgins,et al.  Tensor products and homotopies for ω-groupoids and crossed complexes , 1987 .

[15]  Georges Maltsiniotis,et al.  La théorie de l'homotopie de grothendieck , 2005 .

[16]  P. J. Higgins,et al.  On the algebra of cubes , 1981 .

[17]  Denis-Charles Cisinski,et al.  La catégorie Θ de Joyal est une catégorie test , 2011 .

[18]  Rosa Antolini,et al.  Geometric Realisations of Cubical Sets with Connections, and Classifying Spaces of Categories , 2002, Appl. Categorical Struct..

[19]  D. M. Kan,et al.  ABSTRACT HOMOTOPY. , 1955, Proceedings of the National Academy of Sciences of the United States of America.