An empirical dependence mesaures based on residual variance estimation
暂无分享,去创建一个
[1] J. Nazuno. Haykin, Simon. Neural networks: A comprehensive foundation, Prentice Hall, Inc. Segunda Edición, 1999 , 2000 .
[2] Bernhard Schölkopf,et al. Kernel Methods for Measuring Independence , 2005, J. Mach. Learn. Res..
[3] Nicolai Bissantz,et al. On difference‐based variance estimation in nonparametric regression when the covariate is high dimensional , 2005 .
[4] S. Hyakin,et al. Neural Networks: A Comprehensive Foundation , 1994 .
[5] Anton Schick,et al. Estimating the error variance in nonparametric regression by a covariate-matched u-statistic , 2003 .
[6] A. Rényi. On measures of dependence , 1959 .
[7] J. Marron,et al. On variance estimation in nonparametric regression , 1990 .
[8] Tiejun Tong,et al. Estimating residual variance in nonparametric regression using least squares , 2005 .
[9] B. Silverman,et al. The estimation of residual variance in nonparametric regression , 1988 .
[10] Holger Dette,et al. Estimating the variance in nonparametric regression—what is a reasonable choice? , 1998 .
[11] Michael I. Jordan,et al. Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..
[12] A. J. Jones,et al. A proof of the Gamma test , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[13] Carsten Peterson,et al. Finding the Embedding Dimension and Variable Dependencies in Time Series , 1994, Neural Computation.