A REVIEW OF RECENT ADVANCES IN GENERATOR MAINTENANCE SCHEDULING

ABSTRACT To solve the generator maintenance scheduling, in the past, several mathematical techniques have been applied. These include integer programming, integer linear programming, dynamic programming, branch and bound etc. Several heuristic search algorithms have also been developed. In recent years expert systems, fuzzy approaches, simulated annealing and genetic algorithms have also been tested. This paper presents a survey of the literature over die past fifteen years in the generator maintenance scheduling. The objective is to present a clear picture of the available recent literature of the problem, the constraints and the other aspects of the generator maintenance schedule

[1]  J. Toyoda,et al.  Maintenance scheduling based on two level hierarchical structure to equalize incremental risk , 1989, Conference Papers Power Industry Computer Application Conference.

[2]  Zia A. Yamayee,et al.  A Computationally Efficient Optimal Maintenance Scheduling Method , 1983 .

[3]  M. Morozowski,et al.  Transmission constrained maintenance scheduling of generating units: a stochastic programming approach , 1995 .

[4]  R. Petrovic,et al.  Optimal preventive maintenance scheduling of thermal generating units in power systems: a survey of problem formulations and solution methods , 1988 .

[5]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[6]  P. Duval,et al.  Determining Maintenance Schedules for Thermal Production Units: The Kapila Model , 1983, IEEE Transactions on Power Apparatus and Systems.

[7]  Jyoti K. Parikh,et al.  A systems approach to least-cost maintenance scheduling for an interconnected power system , 1995 .

[8]  George L. Nemhauser,et al.  Introduction To Dynamic Programming , 1966 .

[9]  Nikola Rajaković,et al.  Multiobjective programming in power system optimization: new approach to generator maintenance scheduling , 1994 .

[10]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[11]  Zia Yamayee,et al.  Maintenance Scheduling: Description, Literature Survey, and Interface with Overall Operations Scheduling , 1982, IEEE Transactions on Power Apparatus and Systems.

[12]  R. T. Jenkins,et al.  Maintenance Scheduling Under Uncertainty , 1981 .

[13]  K. Asai Fuzzy Systems for Management , 1995 .

[14]  G. Nemhauser,et al.  Integer Programming , 2020 .

[15]  E. Balas An Additive Algorithm for Solving Linear Programs with Zero-One Variables , 1965 .

[16]  Koichi Nara,et al.  Maintenance scheduling by using simulated annealing method (for power plants) , 1991 .

[17]  Haruo Satoh,et al.  A Periodical Maintenance Scheduling of Thermal and Nuclear Generating Facilities Using Mixed Integer Programming , 1992 .

[18]  Chin E. Lin,et al.  Fuzzy approach for generator maintenance scheduling , 1992 .

[19]  Roy Billinton,et al.  Generating Unit Maintenance Scheduling for Single and Two Interconnected Systems , 1984, IEEE Power Engineering Review.

[20]  K. W. Edwin,et al.  New maintenance-scheduling method with production cost minimization via integer linear programming , 1990 .

[21]  T. Ross Fuzzy Logic with Engineering Applications , 1994 .

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[24]  Junichi Toyoda,et al.  Optimal generating unit maintenance scheduling for multi-area system with network constraints , 1991 .

[25]  Jay Yellen,et al.  A decomposition approach to unit maintenance scheduling , 1992 .

[26]  L. L. Garver,et al.  Adjusting Maintenance Schedules to Levelize Risk , 1972 .

[27]  G. C. Contaxis,et al.  An interactive package for risk evaluation and maintenance scheduling , 1989 .

[28]  J. Stremel,et al.  Production Costing Using the Cumulant Method of Representing the Equivalent Load Curve , 1980, IEEE Transactions on Power Apparatus and Systems.

[29]  Chin E. Lin,et al.  An expert system for generator maintenance scheduling using operation index , 1992 .

[30]  J. Yellen,et al.  Unit maintenance scheduling with fuel constraints , 1991 .

[31]  James A. Momoh,et al.  Overview and literature survey of fuzzy set theory in power systems , 1995 .

[32]  H. M. Merrill,et al.  Power plant maintenance scheduling: optimizing economics and reliability , 1991 .

[33]  D. P. Kothari,et al.  Some aspects of optimal maintenance scheduling of generating units , 1985 .

[34]  Yasuhiro Hayashi,et al.  An algorithm for thermal unit maintenance scheduling through combined use of GA, SA and TS , 1997 .

[35]  X. Wang,et al.  Modern power system planning , 1994 .

[36]  L. Zadeh,et al.  An Introduction to Fuzzy Logic Applications in Intelligent Systems , 1992 .

[37]  Kurt Spielberg,et al.  Direct Search Algorithms for Zero-One and Mixed-Integer Programming , 1967, Oper. Res..

[38]  H. M. Merrill,et al.  Power plant maintenance scheduling - a survey , 1980 .

[39]  John Stremel,et al.  Maintenance Scheduling for Generation System Planning , 1981, IEEE Transactions on Power Apparatus and Systems.

[40]  Madan M. Gupta,et al.  Introduction to Fuzzy Arithmetic , 1991 .

[41]  Laureano F. Escudero,et al.  On maintenance scheduling of production units , 1982 .

[42]  L. R. Mromlinski Transportation problem as a model for optimal schedule of maintenance outages in power systems , 1985 .

[43]  A. M. Geoffrion,et al.  Integer Programming Algorithms: A Framework and State-of-the-Art Survey , 1972 .