Mechanisms underlying nucleosome positioning in vivo.

It has been some 40 years since repeating subunits in eukaryotic chromatin, initially termed "nu bodies," were described. Four decades of study have characterized the structural organization of the nucleosome, from multiple crystal structures of individual nucleosomes to genome-wide maps of nucleosome positions in scores of organisms. Nucleosome positioning can impact essentially all DNA-templated processes, making an appreciation of the forces shaping the nucleosomal landscape in eukaryotes key to fully understanding genomic regulation. Here, we review the factors impacting nucleosome positioning and the ways that nucleosomes can control the output of the genome.

[1]  F. Robert,et al.  Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1. , 2007, Molecular cell.

[2]  I. Albert,et al.  Nucleosome positions predicted through comparative genomics , 2006, Nature Genetics.

[3]  Sumio Sugano,et al.  Chromatin-Associated Periodicity in Genetic Variation Downstream of Transcriptional Start Sites , 2009, Science.

[4]  Kevin Struhl,et al.  Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. , 2005, Molecular cell.

[5]  T. Hughes,et al.  A Compendium of Nucleosome and Transcript Profiles Reveals Determinants of Chromatin Architecture and Transcription , 2013, PLoS genetics.

[6]  G. Felsenfeld,et al.  A histone octamer can step around a transcribing polymerase without leaving the template , 1994, Cell.

[7]  Scott A. Hoose,et al.  Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters , 2006, Nature Structural &Molecular Biology.

[8]  N. Barkai,et al.  A genetic signature of interspecies variations in gene expression , 2006, Nature Genetics.

[9]  D. Bentley,et al.  Histone Occupancy In Vivo at the 601 Nucleosome Binding Element Is Determined by Transcriptional History , 2011, Molecular and Cellular Biology.

[10]  Z. Weng,et al.  The Insulator Binding Protein CTCF Positions 20 Nucleosomes around Its Binding Sites across the Human Genome , 2008, PLoS genetics.

[11]  K. Seifart,et al.  A nucleosome positioned in the distal promoter region activates transcription of the human U6 gene , 1997, Molecular and cellular biology.

[12]  N. Barkai,et al.  Nucleosome organization affects the sensitivity of gene expression to promoter mutations. , 2012, Molecular cell.

[13]  S. Lomvardas,et al.  Modifying Gene Expression Programs by Altering Core Promoter Chromatin Architecture , 2002, Cell.

[14]  G. Ast,et al.  Chromatin organization marks exon-intron structure , 2009, Nature Structural &Molecular Biology.

[15]  B. Pugh,et al.  Identification and Distinct Regulation of Yeast TATA Box-Containing Genes , 2004, Cell.

[16]  Peter A. Jones,et al.  Analysis of individual remodeled nucleosomes reveals decreased histone–DNA contacts created by hSWI/SNF , 2009, Nucleic acids research.

[17]  Kevin Struhl,et al.  A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. , 2012, Molecular cell.

[18]  J. Workman,et al.  Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. , 1992, Science.

[19]  Erin K O'Shea,et al.  Signal-dependent dynamics of transcription factor translocation controls gene expression , 2011, Nature Structural &Molecular Biology.

[20]  Z. Yakhini,et al.  Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters , 2012, Nature Biotechnology.

[21]  Noam Kaplan,et al.  Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization , 2009, Nature Genetics.

[22]  Wolfram Möbius,et al.  Quantitative Test of the Barrier Nucleosome Model for Statistical Positioning of Nucleosomes Up- and Downstream of Transcription Start Sites , 2010, PLoS Comput. Biol..

[23]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[24]  Ben Lehner,et al.  Human genes with CpG island promoters have a distinct transcription-associated chromatin organization , 2012, Genome Biology.

[25]  B. Pugh,et al.  Genome-wide Nucleosome Specificity and Directionality of Chromatin Remodelers , 2012, Cell.

[26]  Yaniv Lubling,et al.  Distinct Modes of Regulation by Chromatin Encoded through Nucleosome Positioning Signals , 2008, PLoS Comput. Biol..

[27]  Bin Xie,et al.  Pausing of RNA Polymerase II Disrupts DNA-Specified Nucleosome Organization to Enable Precise Gene Regulation , 2010, Cell.

[28]  J. Widom,et al.  Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. , 1995, Journal of molecular biology.

[29]  S. Schreiber,et al.  Histone Variant H2A.Z Marks the 5′ Ends of Both Active and Inactive Genes in Euchromatin , 2006, Cell.

[30]  B. Pugh,et al.  Genome-wide structure and organization of eukaryotic pre-initiation complexes , 2011, Nature.

[31]  G. Orphanides,et al.  FACT, a Factor that Facilitates Transcript Elongation through Nucleosomes , 1998, Cell.

[32]  Aviv Regev,et al.  Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. , 2011, Genome research.

[33]  Remo Rohs,et al.  Electrostatic Interactions between Arginines and the Minor Groove in the Nucleosome , 2010, Journal of biomolecular structure & dynamics.

[34]  Steven Henikoff,et al.  ISWI and CHD chromatin remodelers bind to promoters but act in gene bodies , 2013, Epigenetics & Chromatin.

[35]  Ronald W. Davis,et al.  A high-resolution atlas of nucleosome occupancy in yeast , 2007, Nature Genetics.

[36]  T. Miyake,et al.  Comparison of ABF1 and RAP1 in Chromatin Opening and Transactivator Potentiation in the Budding Yeast Saccharomyces cerevisiae , 2004, Molecular and Cellular Biology.

[37]  J. Broach,et al.  Chromatin remodelers clear nucleosomes from intrinsically unfavorable sites to establish nucleosome-depleted regions at promoters , 2011, Molecular biology of the cell.

[38]  O. Rando,et al.  Combinatorial complexity in chromatin structure and function: revisiting the histone code. , 2012, Current opinion in genetics & development.

[39]  E. Segal,et al.  p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. , 2010, Genome research.

[40]  L. Stryer,et al.  Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. , 1988, Nucleic acids research.

[41]  Jonathan Widom,et al.  Dynamics of nucleosome invasion by DNA binding proteins. , 2011, Journal of molecular biology.

[42]  J. Derisi,et al.  Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise , 2006, Nature.

[43]  Guo-Cheng Yuan,et al.  Genomic Sequence Is Highly Predictive of Local Nucleosome Depletion , 2007, PLoS Comput. Biol..

[44]  Jeroen A. A. Demmers,et al.  Remodelers Organize Cellular Chromatin by Counteracting Intrinsic Histone-DNA Sequence Preferences in a Class-Specific Manner , 2012, Molecular and Cellular Biology.

[45]  Naama Barkai,et al.  Promoter Nucleosome Organization Shapes the Evolution of Gene Expression , 2012, PLoS genetics.

[46]  Irene K. Moore,et al.  A genomic code for nucleosome positioning , 2006, Nature.

[47]  Lani F. Wu,et al.  Genome-Scale Identification of Nucleosome Positions in S. cerevisiae , 2005, Science.

[48]  J. Workman,et al.  Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Steven Henikoff,et al.  Capturing the dynamic epigenome , 2010, Genome Biology.

[50]  Fred Winston,et al.  Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene , 2004, Nature.

[51]  W Hörz,et al.  Sequence specific cleavage of DNA by micrococcal nuclease. , 1981, Nucleic acids research.

[52]  C. Bustamante,et al.  The elongation rate of RNA polymerase determines the fate of transcribed nucleosomes , 2011, Nature Structural &Molecular Biology.

[53]  Irene K. Moore,et al.  The DNA-encoded nucleosome organization of a eukaryotic genome , 2009, Nature.

[54]  Nir Friedman,et al.  Dynamics of Replication-Independent Histone Turnover in Budding Yeast , 2007, Science.

[55]  Geoffrey J. Barton,et al.  A Role for Snf2-Related Nucleosome-Spacing Enzymes in Genome-Wide Nucleosome Organization , 2011, Science.

[56]  J. Widom,et al.  Poly(dA-dT) Promoter Elements Increase the Equilibrium Accessibility of Nucleosomal DNA Target Sites , 2001, Molecular and Cellular Biology.

[57]  Daria A. Gaykalova,et al.  Nucleosomes can form a polar barrier to transcript elongation by RNA polymerase II. , 2006, Molecular cell.

[58]  H. Drew,et al.  Sequence periodicities in chicken nucleosome core DNA. , 1986, Journal of molecular biology.

[59]  R. Morse,et al.  Chromatin Opening and Transactivator Potentiation by RAP1 in Saccharomyces cerevisiae , 1999, Molecular and Cellular Biology.

[60]  S. Henikoff,et al.  The unconventional structure of centromeric nucleosomes , 2012, Chromosoma.

[61]  J. Raser,et al.  Control of Stochasticity in Eukaryotic Gene Expression , 2004, Science.

[62]  Steven J. M. Jones,et al.  Dynamic Remodeling of Individual Nucleosomes Across a Eukaryotic Genome in Response to Transcriptional Perturbation , 2007, PLoS biology.

[63]  R. Kornberg,et al.  Twenty-Five Years of the Nucleosome, Fundamental Particle of the Eukaryote Chromosome , 1999, Cell.

[64]  Bryan J Venters,et al.  A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. , 2008, Genome research.

[65]  F. Cross,et al.  Multiple sequence-specific factors generate the nucleosome-depleted region on CLN2 promoter. , 2011, Molecular cell.

[66]  Oliver J. Rando,et al.  Chromatin remodelling at promoters suppresses antisense transcription , 2007, Nature.

[67]  Zhengjian Zhang,et al.  A Novel Mechanism of Antagonism between ATP-Dependent Chromatin Remodeling Complexes Regulates RNR3 Expression , 2009, Molecular and Cellular Biology.

[68]  Jeffrey N. McKnight,et al.  Extranucleosomal DNA Binding Directs Nucleosome Sliding by Chd1 , 2011, Molecular and Cellular Biology.

[69]  S. Elgin,et al.  The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter. , 1995, The EMBO journal.

[70]  Steven M. Johnson,et al.  Determinants of nucleosome organization in primary human cells , 2011, Nature.

[71]  B. Cairns,et al.  The biology of chromatin remodeling complexes. , 2009, Annual review of biochemistry.

[72]  E. O’Shea,et al.  Chromatin decouples promoter threshold from dynamic range , 2008, Nature.

[73]  William Stafford Noble,et al.  Global mapping of protein-DNA interactions in vivo by digital genomic footprinting , 2009, Nature Methods.

[74]  Nathaniel D. Heintzman,et al.  Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome , 2007, Nature Genetics.

[75]  Nir Friedman,et al.  High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. , 2010, Genome research.

[76]  M. Grunstein,et al.  Nucleosome loss activates yeast downstream promoters in vivo , 1988, Cell.

[77]  J. Widom,et al.  Sequence and position-dependence of the equilibrium accessibility of nucleosomal DNA target sites. , 2000, Journal of molecular biology.

[78]  Michael B. Stadler,et al.  Accessibility of the Drosophila genome discriminates PcG repression, H4K16 acetylation and replication timing , 2010, Nature Structural &Molecular Biology.

[79]  M. Groudine,et al.  Chromosomal subunits in active genes have an altered conformation. , 1976, Science.

[80]  Kristin R Brogaard,et al.  A base pair resolution map of nucleosome positions in yeast , 2012, Nature.

[81]  V. Iyer,et al.  Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. , 1995, The EMBO journal.

[82]  F. Winston,et al.  Chromatin and Transcription in Yeast , 2012, Genetics.

[83]  Christoforos Nikolaou,et al.  Nucleosome positioning as a determinant of exon recognition , 2009, Nature Structural &Molecular Biology.

[84]  Carlos Bustamante,et al.  Nucleosomal Fluctuations Govern the Transcription Dynamics of RNA Polymerase II , 2009, Science.

[85]  B. Pugh,et al.  A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. , 2004, Molecular cell.

[86]  Matthieu Legendre,et al.  Unstable Tandem Repeats in Promoters Confer Transcriptional Evolvability , 2009, Science.

[87]  A. Hinnen,et al.  Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. , 1986, The EMBO journal.

[88]  Michelle D. Wang,et al.  Synergistic action of RNA polymerases in overcoming the nucleosomal barrier , 2010, Nature Structural &Molecular Biology.

[89]  K. Struhl,et al.  Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo , 2009, Nature Structural &Molecular Biology.

[90]  J. Lieb,et al.  In Vivo Effects of Histone H3 Depletion on Nucleosome Occupancy and Position in Saccharomyces cerevisiae , 2012, PLoS genetics.

[91]  William Stafford Noble,et al.  Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors , 2012, Genome research.

[92]  R. Simpson,et al.  Structural features of a phased nucleosome core particle. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[93]  T. Owen-Hughes,et al.  Analysis of Nucleosome Repositioning by Yeast ISWI and Chd1 Chromatin Remodeling Complexes* , 2006, Journal of Biological Chemistry.

[94]  Zhenhai Zhang,et al.  A Packing Mechanism for Nucleosome Organization Reconstituted Across a Eukaryotic Genome , 2011, Science.

[95]  N. Friedman,et al.  Dynamics of Sir3 spreading in budding yeast: secondary recruitment sites and euchromatic localization , 2011, The EMBO journal.

[96]  J. Widom,et al.  New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. , 1998, Journal of molecular biology.

[97]  N. Barkai,et al.  Two strategies for gene regulation by promoter nucleosomes. , 2008, Genome research.

[98]  Inkyung Jung,et al.  Genetic Landscape of Open Chromatin in Yeast , 2013, PLoS genetics.

[99]  Roger D. Kornberg,et al.  Nucleosome Retention and the Stochastic Nature of Promoter Chromatin Remodeling for Transcription , 2008, Cell.

[100]  M. Borodovsky,et al.  Nucleosome DNA sequence pattern revealed by multiple alignment of experimentally mapped sequences. , 1996, Journal of molecular biology.

[101]  F. Cross,et al.  Nucleosome-depleted regions in cell-cycle-regulated promoters ensure reliable gene expression in every cell cycle. , 2010, Developmental cell.

[102]  Wilma K Olson,et al.  Working the kinks out of nucleosomal DNA. , 2011, Current opinion in structural biology.

[103]  Dustin E. Schones,et al.  Dynamic Regulation of Nucleosome Positioning in the Human Genome , 2008, Cell.

[104]  Toshio Tsukiyama,et al.  Antagonistic forces that position nucleosomes in vivo , 2006, Nature Structural &Molecular Biology.

[105]  Christopher L. Warren,et al.  A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. , 2008, Molecular cell.

[106]  S. Schreiber,et al.  Global nucleosome occupancy in yeast , 2004, Genome Biology.

[107]  Naama Barkai,et al.  Divergence of nucleosome positioning between two closely related yeast species: genetic basis and functional consequences , 2010, Molecular systems biology.

[108]  H R Drew,et al.  DNA bending and its relation to nucleosome positioning. , 1985, Journal of molecular biology.

[109]  Patrick O. Brown,et al.  Genomewide demarcation of RNA polymerase II transcription units revealed by physical fractionation of chromatin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Timothy R. Hughes,et al.  G+C content dominates intrinsic nucleosome occupancy , 2009, BMC Bioinformatics.

[111]  Daniel J. Gaffney,et al.  Controls of Nucleosome Positioning in the Human Genome , 2012, PLoS genetics.

[112]  S. Henikoff,et al.  Genome-scale profiling of histone H3.3 replacement patterns , 2005, Nature Genetics.

[113]  D. Pe’er,et al.  Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification , 2006, Proceedings of the National Academy of Sciences.

[114]  Sven Bergmann,et al.  Rewiring of the Yeast Transcriptional Network Through the Evolution of Motif Usage , 2005, Science.

[115]  K. Zaret,et al.  An active tissue-specific enhancer and bound transcription factors existing in a precisely positioned nucleosomal array , 1993, Cell.

[116]  Philipp Korber,et al.  In Vitro Assembly of the Characteristic Chromatin Organization at the Yeast PHO5 Promoter by a Replication-independent Extract System* , 2004, Journal of Biological Chemistry.

[117]  Aviv Regev,et al.  The Role of Nucleosome Positioning in the Evolution of Gene Regulation , 2010, PLoS biology.

[118]  W Hörz,et al.  Nuclease hypersensitive regions with adjacent positioned nucleosomes mark the gene boundaries of the PHO5/PHO3 locus in yeast. , 1986, The EMBO journal.

[119]  V. Studitsky,et al.  RNA polymerase complexes cooperate to relieve the nucleosomal barrier and evict histones , 2010, Proceedings of the National Academy of Sciences.

[120]  A. Hoffmann,et al.  A Unifying Model for the Selective Regulation of Inducible Transcription by CpG Islands and Nucleosome Remodeling , 2009, Cell.

[121]  Alain Arneodo,et al.  A novel strategy of transcription regulation by intragenic nucleosome ordering. , 2010, Genome research.