Approximate Inclusion-Exclusion for Arbitrary Symmetric Functions
暂无分享,去创建一个
[1] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[2] Yaoyun Shi,et al. Quantum communication complexity of block-composed functions , 2007, Quantum Inf. Comput..
[3] A. Razborov. Quantum communication complexity of symmetric predicates , 2002, quant-ph/0204025.
[4] Rocco A. Servedio,et al. Agnostically learning halfspaces , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[5] T. J. Rivlin. An Introduction to the Approximation of Functions , 2003 .
[6] A. Eremenko,et al. Uniform approximation of sgn x by polynomials and entire functions , 2006, math/0604324.
[7] Alexander A. Sherstov. Separating AC0 from depth-2 majority circuits , 2007, STOC '07.
[8] Radakovič. The theory of approximation , 1932 .
[9] Tatsuie Tsukiji,et al. Learning DNF by approximating inclusion-exclusion formulae , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).
[10] Marvin Minsky,et al. Perceptrons: expanded edition , 1988 .
[11] Alexander A. Sherstov. The pattern matrix method for lower bounds on quantum communication , 2008, STOC '08.
[12] Scott Aaronson,et al. Quantum lower bounds for the collision and the element distinctness problems , 2004, JACM.
[13] James Aspnes,et al. The expressive power of voting polynomials , 1991, STOC '91.
[14] V. Tikhomirov,et al. DUALITY OF CONVEX FUNCTIONS AND EXTREMUM PROBLEMS , 1968 .
[15] R. Schapire,et al. Toward efficient agnostic learning , 1992, COLT '92.
[16] S. Bernstein. Sur la meilleure approximation de |x| par des polynomes de degrés donnés , 1914 .
[17] Alexander A. Sherstov. The unbounded-error communication complexity of symmetric functions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.
[18] Ronald de Wolf,et al. A note on quantum algorithms and the minimal degree of ε-error polynomials for symmetric functions , 2008, Quantum Inf. Comput..
[19] Ronald de Wolf,et al. Bounds for small-error and zero-error quantum algorithms , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).
[20] Noam Nisan,et al. Approximate Inclusion-Exclusion , 1990, STOC '90.
[21] Adam R. Klivans,et al. Learning DNF in time 2 Õ(n 1/3 ) . , 2001, STOC 2001.
[22] Alexander A. Sherstov,et al. A Lower Bound for Agnostically Learning Disjunctions , 2007, COLT.
[23] Harry Buhrman,et al. On Computation and Communication with Small Bias , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).
[24] Ramamohan Paturi,et al. On the degree of polynomials that approximate symmetric Boolean functions (preliminary version) , 1992, STOC '92.
[25] Ronald de Wolf,et al. Quantum lower bounds by polynomials , 2001, JACM.
[26] A. S. A Discrepancy-Based Proof of Razborov ’ s Quantum Lower Bounds , 2007 .