Reliability analysis for hydrokinetic turbine blades

Reliability is an important element in the performance of hydrokinetic turbines. It is also a driving factor of the system lifetime cost. In this paper, we perform time-dependent reliability analysis for the blades of a river-based horizontal-axis hydrokinetic turbine. Based on the stochastic representation of the monthly river velocity and material strength, a limit-state function is established with the classical blade element momentum method. In the limit-state function, a failure is defined as the event when the flapwise bending moment exceeds the allowable moment that corresponds to the ultimate strength of the material. The upcrossing rate method is employed to calculate the time-dependent reliability of the hydrokinetic turbine blade over its design life period. The results indicate that setting a proper cut-out river velocity is important for the reliability of the hydrokinetic turbine blade.

[1]  Salman Kahrobaee,et al.  Risk-based Failure Mode and Effect Analysis for wind turbines (RB-FMEA) , 2011, 2011 North American Power Symposium.

[2]  Michael Havbro Faber,et al.  The Ergodicity Assumption for Sea States in the Reliability Estimation of Offshore Structures , 1991 .

[3]  Mats Leijon,et al.  In-stream energy converters in a river : Effects on upstream hydropower station , 2011 .

[4]  Peter M. Allen,et al.  DOWNSTREAM CHANNEL GEOMETRY FOR USE IN PLANNING‐LEVEL MODELS , 1994 .

[5]  P. Carl,et al.  Regularity‐based functional streamflow disaggregation: 1. Comprehensive foundation , 2008 .

[6]  Vivek K. Arora,et al.  A variable velocity flow routing algorithm for GCMs , 1999 .

[7]  D. M. Ely,et al.  A method for evaluating the importance of system state observations to model predictions, with application to the Death Valley regional groundwater flow system , 2004 .

[8]  J. Beersma,et al.  Joint probability of precipitation and discharge deficits in the Netherlands , 2004 .

[9]  Roman Krzysztofowicz,et al.  Hydrologic uncertainty processor for probabilistic river stage forecasting , 2000 .

[10]  Brian Kirke,et al.  Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines , 2011 .

[11]  Xiaoping Du,et al.  Time-Dependent Reliability Analysis for Function Generator Mechanisms , 2011 .

[12]  Ivan Portoghese,et al.  Stochastic bias-correction of daily rainfall scenarios for hydrological applications , 2011 .

[13]  H. T. Mitosek On stochastic properties of daily river flow processes , 2000 .

[14]  Lance Manuel,et al.  A comparison of wind turbine design loads in different environments using inverse reliability techniques , 2004 .

[15]  S. Rice Mathematical analysis of random noise , 1944 .

[16]  Andrzej S. Nowak,et al.  Time-variant reliability profiles for steel girder bridges , 2008 .

[17]  Mohammad Bakir,et al.  Analysis of stochastic characteristics of the Benue River flow process , 2008 .

[18]  Laura Schaefer,et al.  Computational Fluid Dynamics for Hydrokinetic Turbines , 2009 .

[19]  AbuBakr S. Bahaj,et al.  Generating electricity from the oceans , 2011 .

[20]  Robert Fiehwig National Renewable Energy Laboratory Environmental Performance Report for 2009 (Annual Site Environmental Report per DOE Orders 231.1 and 5400.1) , 2011 .

[21]  L. B. Leopold Downstream change of velocity in rivers , 1953 .

[22]  P. H. Madsen,et al.  An Integral Equation Method for the First-Passage Problem in Random Vibration , 1984 .

[23]  K. Breitung Asymptotic crossing rates for stationary Gaussian vector processes , 1988 .

[24]  John E. Quaicoe,et al.  Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review , 2009 .

[25]  Dan M. Frangopol,et al.  Lifetime Performance Analysis of Existing Steel Girder Bridge Superstructures , 2004 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  Paul Duvoy,et al.  HYDROKAL: A module for in-stream hydrokinetic resource assessment , 2012, Comput. Geosci..

[28]  Vincenzo Ilario Carbone,et al.  Numerical discretization of stationary random processes , 2010 .

[29]  Peter Tavner,et al.  Failure Modes and Effects Analysis (FMEA) for wind turbines. , 2010 .

[30]  A. Kiureghian,et al.  OPTIMAL DISCRETIZATION OF RANDOM FIELDS , 1993 .

[31]  Francesco Laio,et al.  Advances in shot noise modeling of daily streamflows , 2005 .

[32]  S.S. Venkata,et al.  Wind energy explained: Theory, Design, and application [Book Review] , 2003, IEEE Power and Energy Magazine.

[33]  Jeff K. Pieper,et al.  Robust Gain Scheduled Control of a Hydrokinetic Turbine , 2011, IEEE Transactions on Control Systems Technology.

[34]  R. Rackwitz,et al.  Approximations of first-passage times for differentiable processes based on higher-order threshold crossings , 1995 .

[35]  Bruno Sudret,et al.  Analytical derivation of the outcrossing rate in time-variant reliability problems , 2008 .

[36]  Martin Otto Laver Hansen,et al.  Aerodynamics of Wind Turbines , 2001 .

[37]  Nicholas J. Clifford,et al.  Classics in physical geography revisited , 1996 .

[38]  Knut O. Ronold,et al.  Reliability-based design of wind-turbine rotor blades against failure in ultimate loading , 2000 .

[39]  Ramana V. Grandhi,et al.  Reliability-based Structural Design , 2006 .

[40]  J. K. Vrijling,et al.  LONG-MEMORY IN STREAMFLOW PROCESSES OF THE YELLOW RIVER , 2005 .

[41]  Puneet Agarwal Structural reliability of offshore wind turbines , 2008 .

[42]  M. Muste,et al.  Practical aspects of ADCP data use for quantification of mean river flow characteristics; Part I: moving-vessel measurements , 2004 .

[43]  P. Döll,et al.  Simulating river flow velocity on global scale , 2005 .

[44]  Lance Manuel,et al.  Efficient models for wind turbine extreme loads using inverse reliability , 2004 .

[45]  Kamil Kaygusuz,et al.  Hydrokinetic energy conversion systems: A technology status review , 2010 .

[46]  L. B. Leopold,et al.  The hydraulic geometry of stream channels and some physiographic implications , 1953 .

[47]  Zdeněk Kala Sensitivity analysis of the stability problems of thin-walled structures , 2005 .