Integration of cryo-EM with atomic and protein-protein interaction data.

[1]  A. Hopfinger Computer-assisted drug design. , 1985, Journal of medicinal chemistry.

[2]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[3]  F. Kaye,et al.  Identification of cellular proteins that can interact specifically with the T/ElA-binding region of the retinoblastoma gene product , 1991, Cell.

[4]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[5]  R. Chace Lords of the ring , 1994 .

[6]  R. Huber,et al.  Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. , 1995, Science.

[7]  W Baumeister,et al.  Self-compartmentalizing proteases. , 1997, Trends in biochemical sciences.

[8]  H. Feldmann,et al.  Unified nomenclature for subunits of the Saccharomyces cerevisiae proteasome regulatory particle. , 1998, Trends in biochemical sciences.

[9]  C. Chothia,et al.  Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[10]  D. Whelan,et al.  THE PROMISE ( AND PERIL ) , 2017 .

[11]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[12]  N. Volkmann,et al.  Quantitative fitting of atomic models into observed densities derived by electron microscopy. , 1999, Journal of structural biology.

[13]  W. Baumeister,et al.  The 26S proteasome: a molecular machine designed for controlled proteolysis. , 1999, Annual review of biochemistry.

[14]  David C. Jones,et al.  GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. , 1999, Journal of molecular biology.

[15]  A. Sali,et al.  Comparative protein structure modeling of genes and genomes. , 2000, Annual review of biophysics and biomolecular structure.

[16]  Ronald D. Vale,et al.  Aaa Proteins , 2000, The Journal of cell biology.

[17]  W Chiu,et al.  Fourier amplitude decay of electron cryomicroscopic images of single particles and effects on structure determination. , 2001, Journal of structural biology.

[18]  T L Blundell,et al.  FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. , 2001, Journal of molecular biology.

[19]  M. Baker,et al.  Bridging the information gap: computational tools for intermediate resolution structure interpretation. , 2001, Journal of molecular biology.

[20]  W Wriggers,et al.  Modeling tricks and fitting techniques for multiresolution structures. , 2001, Structure.

[21]  G. Pruijn,et al.  Protein-protein interactions between human exosome components support the assembly of RNase PH-type subunits into a six-membered PNPase-like ring. , 2002, Journal of molecular biology.

[22]  J. Berg,et al.  Molecular dynamics simulations of biomolecules , 2002, Nature Structural Biology.

[23]  H. Towbin Towbin H, Staehelin T & Gordon J. Electrophoretic transfer of proteins frompolyacrylatnide gels to nitrocellulose sheets: procedure and some applications. Proc. Nat. Acad. Sd. USA 76:4350-4. 1979 , 2002 .

[24]  R. Russell,et al.  Potential artefacts in protein‐interaction networks , 2002, FEBS letters.

[25]  Peer Bork,et al.  A complex prediction: three‐dimensional model of the yeast exosome , 2002, EMBO reports.

[26]  Patrick Aloy,et al.  Interrogating protein interaction networks through structural biology , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  A. Sinz Chemical cross-linking and mass spectrometry for mapping three-dimensional structures of proteins and protein complexes. , 2003, Journal of mass spectrometry : JMS.

[28]  R. Henderson,et al.  Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. , 2003, Journal of molecular biology.

[29]  Wolfgang Baumeister,et al.  Three-Dimensional Structure of Herpes Simplex Virus from Cryo-Electron Tomography , 2003, Science.

[30]  Andrei N Lupas,et al.  Phylogenetic analysis of AAA proteins. , 2004, Journal of structural biology.

[31]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[32]  R. Baierlein Probability Theory: The Logic of Science , 2004 .

[33]  E. Conti,et al.  The archaeal exosome core is a hexameric ring structure with three catalytic subunits , 2005, Nature Structural &Molecular Biology.

[34]  S. Fields High‐throughput two‐hybrid analysis , 2005, The FEBS journal.

[35]  Johannes Söding,et al.  The HHpred interactive server for protein homology detection and structure prediction , 2005, Nucleic Acids Res..

[36]  M. Baker,et al.  Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. , 2005, Journal of structural biology.

[37]  M. S. Chapman,et al.  Fitting of high-resolution structures into electron microscopy reconstruction images. , 2005, Structure.

[38]  Johannes Söding,et al.  Protein homology detection by HMM?CHMM comparison , 2005, Bioinform..

[39]  F. Förster,et al.  Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  O. Schueler‐Furman,et al.  Progress in Modeling of Protein Structures and Interactions , 2005, Science.

[41]  Johannes Söding,et al.  The MPI Bioinformatics Toolkit for protein sequence analysis , 2006, Nucleic Acids Res..

[42]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using Modeller , 2006, Current protocols in bioinformatics.

[43]  Michael Nilges,et al.  Weighting of experimental evidence in macromolecular structure determination. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Karsten Suhre,et al.  NORMA: a tool for flexible fitting of high-resolution protein structures into low-resolution electron-microscopy-derived density maps. , 2006, Acta crystallographica. Section D, Biological crystallography.

[45]  Quansheng Liu,et al.  Reconstitution, Activities, and Structure of the Eukaryotic RNA Exosome , 2006, Cell.

[46]  Interaction-site prediction for protein complexes: a critical assessment , 2007, Bioinform..

[47]  B. Chait,et al.  Determining the architectures of macromolecular assemblies , 2007, Nature.

[48]  C. Robinson,et al.  The role of mass spectrometry in structure elucidation of dynamic protein complexes. , 2007, Annual review of biochemistry.

[49]  Juri Rappsilber,et al.  Structural Analysis of Multiprotein Complexes by Cross-linking, Mass Spectrometry, and Database Searching*S , 2007, Molecular & Cellular Proteomics.

[50]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.

[51]  Friedrich Förster,et al.  Structure determination in situ by averaging of tomograms. , 2007, Methods in cell biology.

[52]  A. Sali,et al.  Comparative Modeling of Drug Target Proteins , 2007, Comprehensive Medicinal Chemistry II.

[53]  Shigeyuki Yokoyama,et al.  Structural basis for interaction of the ribosome with the switch regions of GTP-bound elongation factors. , 2007, Molecular cell.

[54]  Frank Alber,et al.  Integrating diverse data for structure determination of macromolecular assemblies. , 2008, Annual review of biochemistry.

[55]  Leonardo G. Trabuco,et al.  Flexible fitting of atomic structures into electron microscopy maps using molecular dynamics. , 2008, Structure.

[56]  Structure of Monomeric Yeast and Mammalian Sec61 Complexes Interacting with the Translating Ribosome , 2009, Science.

[57]  F. Striebel,et al.  Controlled destruction: AAA+ ATPases in protein degradation from bacteria to eukaryotes. , 2009, Current opinion in structural biology.

[58]  A. Sali,et al.  An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. , 2009, Biochemical and biophysical research communications.

[59]  D. Baker,et al.  Refinement of protein structures into low-resolution density maps using rosetta. , 2009, Journal of molecular biology.

[60]  Yigong Shi,et al.  Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. , 2009, Molecular cell.

[61]  Friedrich Förster,et al.  Insights into the molecular architecture of the 26S proteasome , 2009, Proceedings of the National Academy of Sciences.

[62]  Klaus Schulten,et al.  Structural Insight into Nascent Polypeptide Chain–Mediated Translational Stalling , 2009, Science.

[63]  J. Whittle,et al.  The nuclear pore complex has entered the atomic age. , 2009, Structure.

[64]  M. Habeck,et al.  Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. , 2009, Molecular cell.

[65]  R. Aebersold,et al.  Probing Native Protein Structures by Chemical Cross-linking, Mass Spectrometry, and Bioinformatics , 2010, Molecular & Cellular Proteomics.

[66]  Ben M. Webb,et al.  Integrative Structure Modeling of Macromolecular Assemblies from Proteomics Data* , 2010, Molecular & Cellular Proteomics.

[67]  Andrej Sali,et al.  Integrating Diverse Data For Structure Determination of Macromolecular Assemblies , 2010 .

[68]  Yifan Cheng,et al.  Interactions of PAN's C‐termini with archaeal 20S proteasome and implications for the eukaryotic proteasome–ATPase interactions , 2010, The EMBO journal.

[69]  A. Sali,et al.  Toward an Integrated Structural Model of the 26S Proteasome* , 2010, Molecular & Cellular Proteomics.

[70]  Jimin Wang,et al.  Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. , 2010, Molecular cell.