Total syntheses of bryostatins: synthesis of two ring-expanded bryostatin analogues and the development of a new-generation strategy to access the C7-C27 fragment.

Herein, we report the synthesis of novel ring-expanded bryostatin analogues. By carefully modifying the substrate, a selective and high-yielding Ru-catalyzed tandem enyne coupling/Michael addition was employed to construct the northern fragment. Ring-closing metathesis was utilized to form the 31-membered ring macrocycle of the analogue. These ring-expanded bryostatin analogues possess anticancer activity against several cancer cell lines. Given the difficulty in forming the C16-C17 olefin at a late stage, we also describe our development of a new-generation strategy to access the C7-C27 fragment, containing both the ring B and C subunits.

[1]  B. Trost,et al.  Atom-economic and stereoselective syntheses of the ring a and B subunits of the bryostatins. , 2011, Chemistry.

[2]  B. Trost,et al.  Total synthesis of bryostatins: the development of methodology for the atom-economic and stereoselective synthesis of the ring C subunit. , 2011, Chemistry.

[3]  P. Blumberg,et al.  Molecular modeling, total synthesis, and biological evaluations of C9-deoxy bryostatin 1. , 2010, Angewandte Chemie.

[4]  K. Hale,et al.  New approaches to the total synthesis of the bryostatin antitumor macrolides. , 2010, Chemistry, an Asian journal.

[5]  M. Krische,et al.  Concise synthesis of the bryostatin A-ring via consecutive C-C bond forming transfer hydrogenations. , 2009, Organic letters.

[6]  Guangbin Dong,et al.  Total synthesis of bryostatin 16 using atom-economical and chemoselective approaches , 2008, Nature.

[7]  J. Muzart Gold-catalysed reactions of alcohols: isomerisation, inter- and intramolecular reactions leading to C–C and C–heteroatom bonds , 2008 .

[8]  Paul A. Wender,et al.  Efficient synthetic access to a new family of highly potent bryostatin analogues via a Prins-driven macrocyclization strategy. , 2008, Journal of the American Chemical Society.

[9]  R. Schrock,et al.  22. Catalytic Asymmetric Olefin Metathesis , 2008 .

[10]  B. Trost,et al.  Synthesis of a ring-expanded bryostatin analogue. , 2007, Journal of the American Chemical Society.

[11]  J. D. De Brabander,et al.  Metal-catalyzed regioselective oxy-functionalization of internal alkynes: an entry into ketones, acetals, and spiroketals. , 2006, Organic letters.

[12]  A. Aliev,et al.  Enantioselective formal total synthesis of the antitumor macrolide bryostatin 7. , 2006, Organic letters.

[13]  B. Hearn,et al.  C-15 thiazol-4-yl analogues of (E)-9,10-didehydroepothilone D: synthesis and cytotoxicity. , 2006, Organic letters.

[14]  Marcus V. N. Souza TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) an Important Reagent in Alcohol Oxidation and its Application in Synthesis of Natural Products , 2006 .

[15]  E. J. Thomas,et al.  A preliminary evaluation of a metathesis approach to bryostatins , 2006 .

[16]  F. Song,et al.  Gold-catalyzed cyclization of (Z)-2-en-4-yn-1-ols: highly efficient synthesis of fully substituted dihydrofurans and furans. , 2005, Organic letters.

[17]  B. M. Trost,et al.  Ruthenium‐katalysierte Reaktionen – eine Schatzkiste für atomökonomische Umwandlungen , 2005 .

[18]  B. Trost,et al.  Ruthenium-catalyzed reactions--a treasure trove of atom-economic transformations. , 2005, Angewandte Chemie.

[19]  S. Martin,et al.  Ring-closing metathesis as a construct for the synthesis of polycyclic alkaloids , 2005 .

[20]  B. Trost,et al.  A Ru-catalyzed tandem alkyne-enone coupling/Michael addition: synthesis of 4-methylene-2,6-cis-tetrahydropyrans. , 2005, Organic letters.

[21]  J. L. Snelgrove,et al.  Highly efficient Ru-pseudohalide catalysts for olefin metathesis. , 2005, Journal of the American Chemical Society.

[22]  E. Negishi,et al.  Palladium‐ or Nickel‐Catalyzed Cross‐Coupling with Organometals Containing Zinc, Aluminum, and Zirconium: The Negishi Coupling , 2005 .

[23]  K. Nicolaou,et al.  Metathesis reactions in total synthesis. , 2005, Angewandte Chemie.

[24]  K. Nicolaou,et al.  Metathesereaktionen in der Totalsynthese , 2005 .

[25]  James D White,et al.  Total synthesis of polycavernoside A, a lethal toxin of the red alga Polycavernosa tsudai. , 2005, The Journal of organic chemistry.

[26]  Ming Xian,et al.  Toward understanding how the lactone moiety of discodermolide affects activity. , 2005, Journal of the American Chemical Society.

[27]  K. Nicolaou,et al.  A mild and selective method for the hydrolysis of esters with trimethyltin hydroxide. , 2005, Angewandte Chemie.

[28]  S. Martin Ring-closing metathesis: A facile construct for alkaloid synthesis , 2005 .

[29]  H. Seradj,et al.  Synthesis of the bryostatin 1 northern hemisphere (C1-C16) via desymmetrization by ketalization/ring-closing metathesis. , 2004, Organic letters.

[30]  T. Hoye,et al.  Relay ring-closing metathesis (RRCM): a strategy for directing metal movement throughout olefin metathesis sequences. , 2004, Journal of the American Chemical Society.

[31]  K. Gustafson,et al.  Structure of bryostatin 20: a symbiont-produced chemical defense for larvae of the host bryozoan, Bugula neritina. , 2004, Journal of natural products.

[32]  E. J. Bowman,et al.  Total synthesis of the salicylate enamide macrolide oximidine III: application of relay ring-closing metathesis. , 2004, Angewandte Chemie.

[33]  V. Nair,et al.  Indium- and gallium-mediated carbon-carbon bond-forming reactions in organic synthesis , 2004 .

[34]  Isamu Shiina,et al.  An effective use of benzoic anhydride and its derivatives for the synthesis of carboxylic esters and lactones: a powerful and convenient mixed anhydride method promoted by basic catalysts. , 2004, The Journal of organic chemistry.

[35]  H. Bestmann,et al.  Further Improvements of the Synthesis of Alkynes from Aldehydes , 2003 .

[36]  T. Loh,et al.  Indium-mediated reaction of trialkylsilyl propargyl bromide with aldehydes: highly regioselective synthesis of allenic and homopropargylic alcohols. , 2003, Journal of the American Chemical Society.

[37]  R. Grubbs,et al.  A general model for selectivity in olefin cross metathesis. , 2003, Journal of the American Chemical Society.

[38]  P. Wender,et al.  The practical synthesis of a novel and highly potent analogue of bryostatin. , 2002, Journal of the American Chemical Society.

[39]  Isamu Shiina,et al.  A novel and efficient macrolactonization of ω-hydroxycarboxylic acids using 2-methyl-6-nitrobenzoic anhydride (MNBA) , 2002 .

[40]  Isamu Shiina,et al.  A New Condensation Reaction for the Synthesis of Carboxylic Esters from Nearly Equimolar Amounts of Carboxylic Acids and Alcohols Using 2-Methyl-6-nitrobenzoic Anhydride , 2002 .

[41]  Muntari,et al.  A highly atom efficient, solvent promoted addition of tetraallylic, tetraallenic, and tetrapropargylic stannanes to carbonyl compounds. , 2001, The Journal of organic chemistry.

[42]  T. Lampe,et al.  Asymmetric synthesis of the northern half C1-C16 of the bryostatins. , 2001, Organic letters.

[43]  A. Frontier,et al.  Atom Economical Syntheses of Oxygen Heterocycles via Tandem Palladium-Catalyzed Reactions , 2000 .

[44]  A. Hoveyda,et al.  Efficient and Recyclable Monomeric and Dendritic Ru-Based Metathesis Catalysts , 2000 .

[45]  Y. Ishikawa,et al.  Total Synthesis of Bryostatin 3 , 2000 .

[46]  Ken Ohmori,et al.  Totalsynthese von Bryostatin 3 , 2000 .

[47]  E. Corey,et al.  Reduction of Carbonyl Compounds with Chiral Oxazaborolidine Catalysts: A New Paradigm for Enantioselective Catalysis and a Powerful New Synthetic Method. , 1998, Angewandte Chemie.

[48]  E. J. Corey,et al.  Reduktion von Carbonylverbindungen mit chiralen Oxazaborolidin‐Katalysatoren: eine neue enantioselektive Katalyse und leistungsfähige Synthesemethode , 1998 .

[49]  S. Kiyooka,et al.  Enantioselective acyclic stereoselection under catalyst control—III. A very short asymmetric synthesis of the bryostatin C1C9 segment using the chiral oxazaborolidinone-promoted aldol reaction , 1997 .

[50]  P. Blumberg,et al.  Antineoplastic agents. 340. Isolation and structural elucidation of bryostatins 16-18. , 1996, Journal of natural products.

[51]  M. P. Koleck,et al.  Bryostatins revisited: a new bryostatin 3 and the use of NMR to determine stereochemistry in the C-20-C-23 area , 1992 .

[52]  D. Dess,et al.  A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species , 1991 .

[53]  D. Schaufelberger,et al.  Revised structure of bryostatin 3 and isolation of the bryostatin 3 26-ketone from Bugula neritina , 1991 .

[54]  M. Nantz,et al.  Synthesis of bryostatin 7 , 1990 .

[55]  N. Petasis,et al.  Titanium-mediated carbonyl olefinations. 1. Methylenations of carbonyl compounds with dimethyltitanocene , 1990 .

[56]  H. Nozaki,et al.  Distannoxane as reverse micelle-type catalyst: novel solvent effect on reaction rate of transesterification , 1989 .

[57]  A. Reitz,et al.  The Wittig olefination reaction and modifications involving phosphoryl-stabilized carbanions. Stereochemistry, mechanism, and selected synthetic aspects , 1989 .

[58]  E. Carreira,et al.  Directed reduction of .beta.-hydroxy ketones employing tetramethylammonium triacetoxyborohydride , 1988 .

[59]  G. Pettit,et al.  Isolation and structure of bryostatins 10 and 11 , 1987 .

[60]  J. Leet,et al.  Antineoplastic agents. 126. Isolation and structure of bryostatins 12 and 13 , 1987 .

[61]  T. Okazoe,et al.  (E)-Selective olefination of aldehydes by means of gem-dichromium reagents derived by reduction of gem-diiodoalkanes with chromium(II) chloride , 1987 .

[62]  K. Takai,et al.  Simple and selective method for RCHO → (E)-RCH=CHX conversion by means of a CHX3-CrCl2 system , 1986 .

[63]  G. Pettit,et al.  Isolation and structure of bryostatins 5–7 , 1985 .

[64]  G. Pettit,et al.  Structure of bryostatin. 4. An important antineoplastic constituent of geographically diverse Bugula neritina (Bryozoa) , 1984 .

[65]  G. Pettit,et al.  Antineoplastic agents. 93. Structure of the Bugula neritina (marine bryozoa) antineoplastic component bryostatin 3 , 1983 .

[66]  D. Gust,et al.  The structure of bryostatin 2 from the marine bryozoan bugula neritina , 1983 .

[67]  J. Clardy,et al.  Isolation and structure of bryostatin 1 , 1982 .

[68]  E. Negishi Palladium- or nickel-catalyzed cross coupling. A new selective method for carbon-carbon bond formation , 1982 .

[69]  J. Boutagy,et al.  Olefin synthesis with organic phosphonate carbanions , 1974 .

[70]  J. Shibata,et al.  An Effective Method for the Preparation of Chiral Polyoxy 8-Membered Ring Enone Corresponding to the B Ring of Taxol , 2001 .

[71]  F. Qing,et al.  A Novel Synthesis of 9,13-dicis Double Bonds Locked Retinoids , 1997 .

[72]  S. Kelly 3.1 – Alkene Synthesis , 1991 .

[73]  J. Coll,et al.  Isolation and structure of bryostatins 14 and 15 , 1991 .

[74]  T. Yano,et al.  Novel distannoxane-catalyzed transesterification and a new entry to α, β-unsaturated carboxylic acids , 1986 .

[75]  Jean M. Schmidt,et al.  Antineoplastic agents 100: The marine bryozoan Amathia convoluta1 , 1985 .

[76]  P. Bartlett,et al.  An improved reagent for the o-alkyl cleavage of methyl esters by nucleophilic displacement , 1970 .