Diverse types of expertise in facial recognition

[1]  R. Kemp,et al.  Selecting police super-recognisers , 2023, PloS one.

[2]  D. White,et al.  Face-Information Sampling in Super-Recognizers , 2022, Psychological science.

[3]  A. Towler,et al.  Match me if you can: Evidence for a domain-general visual comparison ability , 2022, Psychonomic Bulletin & Review.

[4]  Thomas D. Albright The US Department of Justice stumbles on visual perception , 2021, Proceedings of the National Academy of Sciences.

[5]  Harish Katti,et al.  Qualitative similarities and differences in visual object representations between brains and deep networks , 2021, Nature Communications.

[6]  Graham W. Taylor,et al.  Artificial cognition: How experimental psychology can help generate explainable artificial intelligence , 2020, Psychonomic Bulletin & Review.

[7]  M. Innes,et al.  ‘Assisted’ facial recognition and the reinvention of suspicion and discretion in digital policing , 2020, The British Journal of Criminology.

[8]  Michael C. Frank,et al.  Unsupervised neural network models of the ventral visual stream , 2020, Proceedings of the National Academy of Sciences.

[9]  Josh P. Davis,et al.  UNSW Face Test: A screening tool for super-recognizers , 2020, PloS one.

[10]  Peter J. B. Hancock,et al.  Convolutional neural net face recognition works in non-human-like ways , 2020, Royal Society Open Science.

[11]  Winston H. Hsu,et al.  xCos: An Explainable Cosine Metric for Face Verification Task , 2020, ACM Trans. Multim. Comput. Commun. Appl..

[12]  Michal Irani,et al.  Convergent evolution of face spaces across human face-selective neuronal groups and deep convolutional networks , 2019, Nature Communications.

[13]  Nicholas M. Blauch,et al.  Computational insights into human perceptual expertise for familiar and unfamiliar face recognition , 2019, Cognition.

[14]  D. White,et al.  Super‐recognizers: From the lab to the world and back again , 2019, British journal of psychology.

[15]  A. Burton,et al.  Do professional facial image comparison training courses work? , 2019, PloS one.

[16]  Connor J. Parde,et al.  Deep convolutional neural networks in the face of caricature , 2018, Nature Machine Intelligence.

[17]  Albert Yonas,et al.  Potential downside of high initial visual acuity , 2018, Proceedings of the National Academy of Sciences.

[18]  Connor J. Parde,et al.  Face Space Representations in Deep Convolutional Neural Networks , 2018, Trends in Cognitive Sciences.

[19]  Glenn Langenburg,et al.  “Cannot Decide”: The Fine Line Between Appropriate Inconclusive Determinations Versus Unjustifiably Deciding Not To Decide , 2018, Journal of forensic sciences.

[20]  D. White,et al.  Are Forensic Scientists Experts? , 2018, Journal of Applied Research in Memory and Cognition.

[21]  Swami Sankaranarayanan,et al.  Face recognition accuracy of forensic examiners, superrecognizers, and face recognition algorithms , 2018, Proceedings of the National Academy of Sciences.

[22]  Josh P. Davis,et al.  Identification from CCTV: Assessing police super‐recogniser ability to spot faces in a crowd and susceptibility to change blindness , 2018 .

[23]  A. Casadevall,et al.  A call for more science in forensic science , 2018, Proceedings of the National Academy of Sciences.

[24]  Joshua B. Tenenbaum,et al.  Efficient inverse graphics in biological face processing , 2018, Science Advances.

[25]  Carina A. Hahn,et al.  Wisdom of the social versus non‐social crowd in face identification , 2018, British journal of psychology.

[26]  A. Young,et al.  Are We Face Experts? , 2018, Trends in Cognitive Sciences.

[27]  G. Edmond,et al.  Peer review in forensic science. , 2017, Forensic science international.

[28]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[29]  Claus-Christian Carbon,et al.  An Easy Game for Frauds? Effects of Professional Experience and Time Pressure on Passport-Matching Performance , 2017, Journal of experimental psychology. Applied.

[30]  R. Kemp,et al.  Thinking forensics: Cognitive science for forensic practitioners. , 2017, Science & justice : journal of the Forensic Science Society.

[31]  David White,et al.  Evaluating the Feature Comparison Strategy for Forensic Face Identification , 2017, Journal of experimental psychology. Applied.

[32]  Josh P. Davis,et al.  Investigating predictors of superior face recognition ability in police super-recognisers , 2016 .

[33]  Anna K. Bobak,et al.  Detecting Superior Face Recognition Skills in a Large Sample of Young British Adults , 2016, Front. Psychol..

[34]  Rob Jenkins,et al.  Face Recognition by Metropolitan Police Super-Recognisers , 2016, PloS one.

[35]  David White,et al.  Error Rates in Users of Automatic Face Recognition Software , 2015, PloS one.

[36]  Robert Plomin,et al.  Genetic specificity of face recognition , 2015, Proceedings of the National Academy of Sciences.

[37]  Matthew Q. Hill,et al.  Perceptual expertise in forensic facial image comparison , 2015, Proceedings of the Royal Society B: Biological Sciences.

[38]  A. Burton,et al.  Unfamiliar face matching: Pairs out-perform individuals and provide a route to training. , 2015, British journal of psychology.

[39]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[40]  Klas Brorsson Läthén,et al.  The Effect of Image Quality and Forensic Expertise in Facial Image Comparisons , 2015, Journal of forensic sciences.

[41]  A. Burton,et al.  Passport Officers’ Errors in Face Matching , 2014, PloS one.

[42]  A. Burton,et al.  Crowd Effects in Unfamiliar Face Matching , 2013 .

[43]  Vaidehi S. Natu,et al.  Unaware Person Recognition From the Body When Face Identification Fails , 2013, Psychological science.

[44]  Ruosi Wang,et al.  Individual Differences in Holistic Processing Predict Face Recognition Ability , 2012, Psychological science.

[45]  A. Burton,et al.  Variability in photos of the same face , 2011, Cognition.

[46]  Duncan J. McCarthy,et al.  Identifying Fingerprint Expertise , 2011, Psychological science.

[47]  R. A. Hicklin,et al.  Accuracy and reliability of forensic latent fingerprint decisions , 2011, Proceedings of the National Academy of Sciences.

[48]  W. Geisler,et al.  Contributions of ideal observer theory to vision research , 2011, Vision Research.

[49]  G. Yovel,et al.  Face ethnicity and measurement reliability affect face recognition performance in developmental prosopagnosia: Evidence from the Cambridge Face Memory Test–Australian , 2011, Cognitive neuropsychology.

[50]  K. Nakayama,et al.  Human face recognition ability is specific and highly heritable , 2010, Proceedings of the National Academy of Sciences.

[51]  C. Wilkinson,et al.  Are facial image analysis experts any better than the general public at identifying individuals from CCTV images? , 2009, Science & justice : journal of the Forensic Science Society.

[52]  D. Kahneman,et al.  Conditions for intuitive expertise: a failure to disagree. , 2009, The American psychologist.

[53]  K. Nakayama,et al.  The Cambridge Face Memory Test: Results for neurologically intact individuals and an investigation of its validity using inverted face stimuli and prosopagnosic participants , 2006, Neuropsychologia.

[54]  Josef Kittler,et al.  Combining classifiers , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[55]  S. Carey,et al.  Why faces are and are not special: an effect of expertise. , 1986, Journal of experimental psychology. General.

[56]  Jerome Kagan,et al.  Reflection-impulsivity and reading ability in primary grade children. , 1965 .