A computer-assisted proof for photonic band gaps

Abstract.We investigate photonic crystals, modeled by a spectral problem for Maxwell’s equations with periodic electric permittivity. Here, we specialize to a two-dimensional situation and to polarized waves. By Floquet–Bloch theory, the spectrum has band-gap structure, and the bands are characterized by families of eigenvalue problems on a periodicity cell, depending on a parameter k varying in the Brillouin zone K. We propose a computer-assisted method for proving the presence of band gaps: For k in a finite grid in K, we obtain eigenvalue enclosures by variational methods supported by finite element computations, and then capture all k ∈ K by a perturbation argument.

[1]  H. Behnke,et al.  Inclusion of eigenvalues of general eigenvalue problems for matrices , 1988 .

[2]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[3]  P. Kuchment The mathematics of photonic crystals , 2001 .

[4]  Christian Wieners,et al.  Distributed Point Objects. A New Concept for Parallel Finite Elements , 2005 .

[5]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[6]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[7]  Walter Krämer,et al.  Automatic Forward Error Analysis for Floating Point Algorithms , 2001, Reliab. Comput..

[8]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[9]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[10]  Steven J. Cox,et al.  Maximizing Band Gaps in Two-Dimensional Photonic Crystals , 1999, SIAM J. Appl. Math..

[11]  A. Wiethoff,et al.  C – XSC 2 . 0 : A C + + Class Library for Extended Scientific Computing , 2002 .

[12]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[13]  Christian Wieners,et al.  Eigenvalue inclusions via domain decomposition , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. Two-Dimensional Photonic Crystals , 1996, SIAM J. Appl. Math..

[15]  P. J. McKenna,et al.  A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam , 2006 .